Legal and postal addresses of the publisher: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21


The Role of Protein Kinase A, B, C and D in the Regulation of Cardiomyocyte Contractility (Review). Report I. Pp. 53–61.

Версия для печати

Section: Physiology




Tsirkin Victor Ivanovich, Kazan State Medical University (Kazan, Russia) 

Korotaeva Yuliya Vladimirovna, Postgraduate Student, Natural Geography Faculty, Vyatka State Humanities University (Kirov, Russia)


The review focuses on the role of protein kinase A (PKA), protein kinase B (Akt), protein kinase C (PKC) and relatively recently discovered protein kinase D (PKD) in the regulation of the activity of cardiomyocytes and other cells, performed by catecholamines at activation of alpha1-, beta1- and beta2- adrenoceptors (AR). In particular, scientific literature indicates that the activity of cardiomyocyte PKA intensifies during the interaction of catecholamine with beta1- and beta2-AR (at Gs-signaling). This increases permeability of L-type Cachannels, strengthens Ca-pumps of sarcoplasmic reticulum and plasma membrane as well as enhances PKD and Akt activity. Penetrating into the nucleus, PKA regulates the transcription of genes, including neurotrophin genes, brain-derived neurotrophic factor, tyrosine hydroxylase, and c-fos transcription factor. Akt in cardiomyocytes and other cells plays an important role in such processes as glucose transport and metabolism, proliferation, cell migration, apoptosis, transcription, myocardial hypertrophy and brain development. PKC activity in cardiomyocytes intensifies with alpha1-AR activation. It increases permeability of L-type Ca-channels and TRPC-channels for Ca ions, regulates gene transcription, cell cycle and cell growth and activates PKD. In recent years it has been found that PKD is activated by the interaction between catecholamines and alpha1-AR.This kinase is involved in the regulation of myocardial contractility, including by affecting the activity of troponin I and myosin-binding protein C (cMyBP-C), which is addressed in detail in Part 2 of our review. In addition, PKD regulates gene transcription by phosphorylating histone deacetylase 5 (HDAC5) and thereby regulates cardiac hypertrophy and remodelling. PKD also activates NF-kB transcription factor, thus blocking apoptosis. Further, the article shows the role of PKD in heart failure development.


protein kinase A, protein kinase B, protein kinase C, protein kinase D, cardiomyocyte, contractility, catecholamines.
Download (pdf, 2.7MB )


  1. Hussain M., Orchard C.H. Sarcoplasmic Reticulum Ca2+ Content, L-Type Ca2+ Cur-rent and the Ca2+ Transient in Rat Myocytes During Beta-Adrenergic Stimulation. J. Physiol., 1997, vol. 505 (2), pp. 385– 402. 
  2. Kamp T.J., Hell J.W. Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C. Circ. Res., 2000, vol. 87 (12), pp. 1095−1102. 
  3. Du Y.M., Tang M., Liu C.J., Luo H.Y., Hu X.W. Inhibitory Effect of Adrenomedullin on L-Type Calcium Currents in Guinea-Pig Ventricular Myocytes. Sheng Li Xue Bao, 2002, vol. 54 (6), pp. 479−484. 
  4. Molenaar P., Chen L., Semmler A.B., Parsonage W.A., Kaumann A.J. Human Heart Beta-Adrenoceptors: Beta1-Adrenoceptor Diversification Through ‘Affinity States’ and Polymorphism. Clin. Exp. Pharmacol. Physiol., 2007, vol. 34 (10), pp. 1020−1028. 
  5. Boontje N.M., Merkus D., Zaremba R., Versteilen A., de Waard M.C., Mearini G., de Beer V.J., Carrier L., Walker L.A., Niessen H.W., Dobrev D., Stienen G.J., Duncker D.J., van der Velden J. Enhanced Myofilament Responsiveness Upon β-Adrenergic Stimulation in Post-Infarct Remodeled Myocardium. J. Mol. Cell Cardiol., 2011, vol. 50 (3), pp. 487−499. 
  6. Dean W.L. Role of Platelet Plasma Membrane Ca-ATPase in Health and Disease. World J. Biol. Chem., 2010, vol. 1 (9), pp. 265−270. 
  7. Chen G., Yang X., Alber S., Shusterman V., Salama G. Regional Genomic Regulation of Cardiac Sodium-Calcium Exchanger by Oestrogen. J. Physiol., 2011, vol. 589, pt. 5, pp. 1061−1080. 
  8. Aschar-Sobbi R., Emmett T.L., Kargacin G.J., Kargacin M.E. Phospholamban Phosphorylation Increases the Passive Calcium Leak from Cardiac Sarcoplasmic Reticulum. Pflugers Arch., 2012, vol. 464 (3), pp. 295−305. 
  9. Braun D., Madrigal J.L., Feinstein D.L. Noradrenergic Regulation of Glial Activation: Molecular Mechanisms and Therapeutic Implications. Curr. Neuropharmacol., 2014, vol. 12 (4), pp. 342−352. 
  10. Haworth R.S., Cuello F., Avkiran M. Regulation by Phosphodiesterase Isoforms of Protein Kinase A-Mediated Attenuation of Myocardial Protein Kinase D Activation. Basic Res. Cardiol., 2011, vol. 106 (1), pp. 51−63. 
  11. Franke T.F., Kaplan D.R., Cantley L.C., Toker A. Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-Bisphosphate. Science, 1997, vol. 275 (5300), pp. 665−668. 
  12. Garofalo R.S., Orena S.J., Rafidi K., Torchia A.J., Stock J.L., Hildebrandt A.L., Coskran T., Black S.C., Brees D.J., Wicks J.R., McNeish J.D., Coleman K.G. Severe Diabetes, Age-Dependent Loss of Adipose Tissue, and Mild Growth Deficiency in Mice Lacking Akt2/PKB Beta. J. Clin. Invest., 2003, vol. 112 (2), pp. 197−208. 
  13. Yang Z.Z., Tschopp O., Baudry A., Dümmler B., Hynx D., Hemmings B.A. Physiological Functions of Protein Kinase B/Akt. Biochem. Soc. Trans., 2004, vol. 32, pt. 2, pp. 350–354. 
  14. Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science, 2005, vol. 307 (5712), pp. 1098–1101. 
  15. Song G., Ouyang G., Bao S. The Activation of Akt/PKB Signaling Pathway and Cell Survival. J. Cell. Mol. Med., 2005, vol. 9 (1), pp. 59−71. 
  16. Mushkambarov N.N., Kuznetsov S.L. Molekulyarnaya biologiya [Molecular Biology]. Moscow, 2007. 536 p. 
  17. Stuenaes J.T., Bolling A., Ingvaldsen A., Rommundstad C., Sudar E., Lin F.C., Lai Y.C., Jensen J. Beta- Adrenoceptor Stimulation Potentiates Insulin-Stimulated PKB Phosphorylation in Rat Cardiomyocytes Via cAMP and PKA. Br. J. Pharmacol., 2010, vol. 160 (1), pp. 116–129. 
  18. Mellor H. Parker P.J. The Extended Protein Kinase C Superfamily. Biochem. J., 1998, vol. 332, pt. 2, pp. 281–292. 
  19. Cao W., Cheng L., Behar J., Biancani P., Harnett K.M. L-1beta Signaling in Cat Lower Esophageal Sphincter Circular Muscle. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, vol. 291 (4), pp. 672−680. 
  20. Chou E., Capello S., Levin R., Longhurst P. Excitatory α1-Adrenergic Receptors Predominate over Inhibitory β-Receptors in Rabbit Dorsal Detrusor. J. Urol., 2003, vol. 170 (6), pt. 1, pp. 2503–2507. 
  21. Rang H. Pharmacology. Edinburgh, 2003. 187 р. 
  22. Haworth R.S., Roberts N.A., Cuello F., Avkiran M. Regulation of Protein Kinase D Activity in Adult Myocardium: Novel Counter-Regulatory Roles for Protein Kinase Cepsilon and Protein Kinase A. J. Mol. Cell Cardiol., 2007, vol. 43 (6), pp. 686−695. 
  23. Chung D., Kim Y.S., Phillips J.N., Ulloa A., Ku C.Y., Galan H.L., Sanborn B.M. Attenuation of Canonical Transient Receptor Potential-Like Channel 6 Expression Specifically Reduces the Diacylglycerol-Mediated Increase in Intracellular Calcium in Human Myometrial Cells. Endocrinology, 2010, vol. 151 (1), pp. 406−416. 
  24. Woodard G.E., López J.J., Jardín I., Salido G.M., Rosado J.A. TRPC3 Regulates Agonist-Stimulated Ca2+ Mobilization by Mediating the Interaction between Type I Inositol 1,4,5-Trisphosphate Receptor, RACK1, and Orai1. J. Biol. Chem., 2010, vol. 285 (11), pp. 8045−8053. 
  25. Fu Y. Rubin C.S. Protein Kinase D: Coupling Extracellular Stimuli to the Regulation of Cell Physiology. EMBO Rep., 2011, vol. 12 (8), pp. 785−796. 
  26. Guo J., Gertsberg Z., Ozgen N., Sabri A., Steinberg S.F. Protein Kinase D Isoforms Are Activated in an Agonist- Specific Manner in Cardiomyocytes. J. Biol. Chem., 2011, vol. 286 (8), pp. 6500−6509. 
  27. Phan D., Stratton M.S., Huynh Q.K., McKinsey T.A. A Novel Protein Kinase C Target Site in Protein Kinase D Is Phosphorylated in Response to Signals for Cardiac Hypertrophy. Biochem. Biophys. Res. Commun., 2011, vol. 411 (2), p. 335. 
  28. Nishizawa T., Iwase M., Kanazawa H., Ichihara S., Ichihara G., Nagata K., Obata K., Kitaichi K., Yokoi T., Watanabe M., Tsunematsu T., Ishikawa Y., Murohara T., Yokota M. Serial Alterations of Beta-Adrenergic Signaling in Dilated Cardiomyopathic Hamsters: Possible Role of Myocardial Oxidative Stress. Circ. J., 2004, vol. 68 (11), pp. 1051−1060. 
  29. Landesberg G., Vesselov Y., Einav S., Goodman S., Sprung C.L., Weissman C. Myocardial Ischemia, Cardiac Troponin, and Long-Term Survival of High-Cardiac Risk Critically Ill Intensive Care Unit Patients. Crit. Care Med., 2005, vol. 33, no. 6, pp. 1281−1287. 
  30. Nishio Y., Sato Y., Taniguchi R., Shizuta S., Doi T., Morimoto T., Kimura T., Kita T. Cardiac Troponin T vs Other Biochemical Markers in Patients with Congestive Heart Failure. Сirc. J., 2007, vol. 71 (5), pp. 631−635. 
  31. Avkiran M., Rowland A.J., Cuello F., Haworth R.S. Protein Kinase D in the Cardiovascular System: Emerging Roles in Health and Disease. Circ. Res., 2008, vol. 102 (2), pp. 157−163. 
  32. Bardswell S.C., Cuello F., Rowland A.J., Sadayappan S., Robbins J., Gautel M., Walker J.W., Kentish J.C., Avkiran M. Distinct Sarcomeric Substrates Are Responsible for Protein Kinase D-Mediated Regulation of Cardiac Myofilament Ca2+ Sensitivity and Cross-Bridge Cycling. J. Biol. Chem., 2010, vol. 285 (8), pp. 5674−5682. 
  33. Katrukha I.A. Human Cardiac Troponin Complex. Structure and Functions. Biochemistry (Mosc), 2013, vol. 78 (13), pp. 1447−1465. 
  34. Stathopoulou K., Cuello F., Candasamy A.J., Kemp E.M., Ehler E., Haworth R.S., Avkiran M. Four-and-a-Half LIM Domains Proteins Are Novel Regulators of the Protein Kinase D Pathway in Cardiac Myocytes. Biochem. J., 2014, vol. 457 (3), pp. 451−461. 
  35. Odnoshivkina Yu.G., Petrov A.M., Zefirov A.L. Mekhanizm oposreduemoy β2-adrenoretseptorami medlenno razvivayushcheysya polozhitel’noy inotropnoy reaktsii predserdiy myshi [Mechanism of the Slow Inotropic Response of the Mouse Atrium Mediated by the β2-Adrenoreceptor]. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova, 2011, vol. 97 (11), pp. 1223−1236. 
  36. Belknap B., Harris S.P., White H.D. Modulation of Thin Filament Activation of Myosin ATP Hydrolysis by N-Terminal Domains of Cardiac Myosin Binding Protein-C. Biochemistry, 2014, vol. 53 (42), pp. 6717−6724. 
  37. Rao V., Cheng Y., Lindert S., Wang D., Oxenford L., McCulloch A.D., McCammon J.A., Regnier M. PKA Phosphorylation of Cardiac Troponin I Modulates Activation and Relaxation Kinetics of Ventricular Myofibrils. Biophys. J., 2014, vol. 107 (5), pp. 1196−1204. 
  38. Ghobrial I.M., Roccaro A., Hong F., Weller E., Rubin N., Leduc R., Rourke M., Chuma S., Sacco A., Jia X., Azab F., Azab A.K., Rodig S., Warren D., Harris B., Varticovski L., Sportelli P., Leleu X., Anderson K.C., Richardson P.G. Clinical and Translational Studies of a Phase II Trial of the Novel Oral Akt Inhibitor Perifosine in Relapsed or Relapsed/ Refractory Waldenstrom’s Macroglobulinemia. Clin. Cancer Res., 2010, vol. 16 (3), pp. 1033–1041.