Address: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21


Cryopreservation of Spermatogonial Stem Cells: Its Clinical Use for Fertility Preservation in Prepubertal Patients. P. 33–42

Версия для печати

Section: Physiology




Mariya V. Polyakova*
*Skolkovo Institute of Science and Technology (Moscow, Russian Federation)
Corresponding author: Mariya Polyakova, address: ul. Nobelya 3, Skolkovo Innovation Center, Moscow, 143026, Russian Federation;


Maintenance of mammalian spermatogenesis depends on the presence of spermatogonial stem cells (SSCs). SSC damage caused by chemical or physical actions on the body, various diseases or genetic predisposition can occur at any age. Infertility, as one of the side effects of cancer treatment, is an important issue for patients and their families. Since semen cryopreservation is applicable only for postpubertal patients, an alternative is required to preserve fertility in younger patients whose spermatogenesis has not yet begun. One of the most likely solutions is SSC cryopreservation. This paper analysed various methods of cryopreservation and studied recent advances in reproductive medicine opening up new opportunities for human fertility restoration. Such methods as testicular tissue cryopreservation, SSC transplantation, and testicular tissue grafting are at the experimental stage. However, their effectiveness largely depends on the amount of available stored SSCs, which has been proved by numerous studies on animal models. There has been significant progress in SSC maintenance in vitro, isolated from the testicles of primates, with subsequent autotransplantation. Cryopreservation, successfully used to preserve testicular tissue and suspensions of animal testicular cells, is a promising method for human gonadal tissues and SSCs and thus can be an alternative way to preserve natural fertility. However, today these reproductive technologies are still at the research stage, and their improvement in the near future will advance further understanding of the mechanism of spermatogenesis and its pathogenesis, which can result in more effective treatment of male infertility (even the most severe forms) and its prevention.


spermatogonial stem cells, cryopreservation, in vitro spermatogenesis, fertility restoration, prepubertal boys, cell therapy, assisted reproductive technologies
Download (pdf, 1.2MB )


  1. Inhorn M.C., Patrizio P. Infertility Around the Globe: New Thinking on Gender, Reproductive Technologies and Global Movements in the 21st Century. Hum. Reprod. Update, 2015, vol. 21, no. 4, pp. 411–426.
  2. Tschudin S., Bitzer J. Psychological Aspects of Fertility Preservation in Men and Women Affected by Cancer and Other Life-Threatening Diseases. Hum. Reprod. Update, 2009, vol. 15, no. 5, pp. 587–597.
  3. Anderson R.A., Mitchell R.T., Kelsey T.W., Spears N., Telfer E.E., Wallace W.H.B. Cancer Treatment and Gonadal Function: Experimental and Established Strategies for Fertility Preservation in Children and Young Adults. Lancet Diabetes Endocrinol., 2015, vol. 3, no. 7, pp. 556–567. 
  4. Polyakova M.V. Vliyanie usloviy kul’tivirovaniya na podderzhanie spermatogoniy khryaka in vitro: avtoref. dis. ... kand. biol. nauk [Effect of Cultivation Conditions on the Maintenance of Boar Spermatogonia in vitro: Cand. Biol. Sci. Diss. Abs.]. Moscow, 2013. 27 p. 
  5. Sato T., Katagiri K., Kubota Y., Ogawa T. In vitro Sperm Production from Mouse Spermatogonial Stem Cell Lines Using an Organ Culture Method. Nat. Protoc., 2013, vol. 8, no. 11, pp. 2098–2104. 
  6. Keros V., Hultenby K., Borgström B., Fridström M., Jahnukainen K., Hovatta O. Methods of Cryopreservation of Testicular Tissue with Viable Spermatogonia in Pre-Pubertal Boys Undergoing Gonadotoxic Cancer Treatment. Hum. Reprod., 2007, vol. 22, no. 5, pp. 1384–1395. 
  7. Poels J., Van Langendonckt A., Many M.C., Wese F.X., Wyns C. Vitrification Preserves Proliferation Capacity in Human Spermatogonia. Hum. Reprod., 2013, vol. 28, pp. 578–589. 
  8. Brinster R.L., Zimmermann J.W. Spermatogenesis Following Male Germ-Cell Transplantation. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 24, pp. 11298–11302. 
  9. Shinohara T., Inoue K., Ogonuki N., Kanatsu-Shinohara M., Miki H., Nakata K., Kurome M., Nagashima H., Toyokuni S., Kogishi K., Honjo T., Ogura A. Birth of Offspring Following Transplantation of Cryopreserved Immature Testicular Pieces and in vitro Microinsemination. Hum. Reprod., 2002, vol. 17, no. 12, pp. 3039–3045. 
  10. Pothana L., Makala H., Devi L., Varma V.P., Goel S. Germ Cell Differentiation in Cryopreserved, Immature, Indian Spotted Mouse Deer (Moschiola indica) Testes Xenografted onto Mice. Theriogenology, 2015, vol. 83, no. 4, pp. 625–633. 
  11. Radford J. Restoration of Fertility After Treatment for Cancer. Horm. Res., 2003, vol. 59, suppl. 1, pp. 21–23. 
  12. Jahnukainen K., Hou M., Petersen C., Setchell B, Söder O. Intratesticular Transplantation of Testicular Cells from Leukemic Rats Causes Transmission of Leukemia. Cancer Res., 2001, vol. 61, no. 2, pp. 706–710. 
  13. Geens M., Goossens E., Tournaye H. Cell Selection by Selective Matrix Adhesion Is Not Sufficiently Efficient for Complete Malignant Cell Depletion from Contaminated Human Testicular Cell Suspensions. Fertil. Steril., 2011, vol. 95, no. 2, pp. 787–791. 
  14. Geens M., Van de Velde H., De Block G., Goossens E., Van Steirteghem A., Tournaye H. The Efficiency of Magnetic-Activated Cell Sorting and Fluorescence-Activated Cell Sorting in the Decontamination of Testicular Cell Suspensions in Cancer Patients. Hum. Reprod., 2007, vol. 22, no. 3, pp. 733–742. 
  15. Dovey S.L., Valli B., Hermann B.P., Sukhwani M., Donohue J., Castro C.A., Chu T., Sanfilippo J.S., Orwig K.E. Eliminating Malignant Contamination from Therapeutic Human Spermatogonial Stem Cells. J. Clin. Invest., 2013, vol. 123, no. 4, pp. 1833–1843. 
  16. Fujita K., Ohta H., Tsujimura A., Takao T., Miyagawa Y., Takada S., Matsumiya K., Wakayama T., Okuyama A. Transplantation of Spermatogonial Stem Cells Isolated from Leukemic Mice Restores Fertility Without Inducing Leukemia. J. Clin. Invest., 2005, vol. 115, no. 7, pp. 1855–1861. 
  17. Sadri-Ardekani H., Homburg C.H., van Capel T.M., van den Berg H., van der Veen F., van der Schoot C.E., van Pelt A.M., Repping S. Eliminating Acute Lymphoblastic Leukemia Cells from Human Testicular Cell Cultures: A Pilot Study. Fertil. Steril., 2014, vol. 101, no. 4, pp. 1072–1078. 
  18. Meng X., Lindahl M., Hyvönen M.E., Parvinen M., de Rooij D.G., Hess M.W., Raatikainen-Ahokas A., Sainio K., Rauvala H., Lakso M., Pichel J.G., Westphal H., Saarma M., Sariola H. Regulation of Cell Fate Decision of Undifferentiated Spermatogonia by GDNF. Science, 2000, vol. 287, no. 5457, pp. 1489–1493. 
  19. Rassoulzadegan M., Paquis‑Flucklinger V., Bertino B., Sage J., Jasin M., Miyagawa K., van Heyningen V., Besmer P., Cuzin F. Transmeiotic Differentiation of Male Germ Cells in Culture. Cell, 1993, vol. 75, no. 5, pp. 997–1006. 
  20. Staub C. A Century of Research on Mammalian Male Germ Cell Meiotic Differentiation in vitro. J. Androl., 2001, vol. 22, no. 6, pp. 911–926. 
  21. La Salle S., Sun F., Handel M.A. Isolation and Short‑Term Culture of Mouse Spermatocytes for Analysis of Meiosis. Methods Mol. Biol., 2009, vol. 558, pp. 279–297. 
  22. Abu Elhija M., Lunenfeld E., Schlatt S., Huleihel M. Differentiation of Murine Male Germ Cells to Spermatozoa in a Soft Agar Culture System. Asian J. Androl., 2012, vol. 14, no. 2, pp. 285–293. 
  23. Sato T., Katagiri K., Gohbara A., Inoue K., Ogonuki N., Ogura A., Kubota Y., Ogawa T. In vitro Production of Functional Sperm in Cultured Neonatal Mouse Testes. Nature, 2011, vol. 471, pp. 504–507. 
  24. Yokonishi T., Sato T., Komeya M., Katagiri K., Kubota Y., Nakabayashi K., Hata K., Inoue K., Ogonuki N., Ogura A., Ogawa T. Offspring Production with Sperm Grown in vitro from Cryopreserved Testis Tissues. Nat. Commun., 2014, vol. 5. Art. no. 4320. 
  25. Polyakova M.V. Perspektivy ispol’zovaniya spermatogonial’nykh stvolovykh kletok pri izuchenii mekhanizmov spermatogeneza i lechenii muzhskogo besplodiya [Prospects for the Use of Spermatogonial Stem Cells for Studying the Mechanisms of Spermatogenesis and Treatment of Male Infertility]. Andrologiya i genital’naya khirurgiya, 2016, vol. 17, no. 4, pp. 17–20. 
  26. Kawai K., Li Y.S., Song M.F., Kasai H. DNA Methylation by Dimethyl Sulfoxide and Methionine Sulfoxide Triggered by Hydroxyl Radical and Implications for Epigenetic Modifications. Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 1, pp. 260–265. 
  27. Wu X., Goodyear S.M., Abramowitz L.K., Bartolomei M.S., Tobias J.W., Avarbock M.R., Brinster R.L. Fertile Offspring Derived from Mouse Spermatogonial Stem Cells Cryopreserved for More Than 14 Years. Hum. Reprod., 2012, vol. 27, no. 5, pp. 1249–1259. 
  28. Yuan Z., Hou R., Wu J. Generation of Mice by Transplantation of an Adult Spermatogonial Cell Line After Cryopreservation. Cell Prolif., 2009, vol. 42, no. 2, pp. 123–131. 
  29. Hermann B.P., Sukhwani M., Winkler F., Pascarella J.N., Peters K.A., Sheng Y., Valli H., Rodriguez M., Ezzelarab M., Dargo G., Peterson K., Masterson K., Ramsey C., Ward T., Lienesch M., Volk A., Cooper D.K., Thomson A.W., Kiss J.E., Penedo M.C., Schatten G.P., Mitalipov S., Orwig K.E. Spermatogonial Stem Cell Transplantation into Rhesus Testes Regenerates Spermatogenesis Producing Functional Sperm. Cell Stem Cell, 2012, vol. 11, no. 5, pp. 715–726.