Legal and postal addresses of the publisher: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21


The Role of Excessive Meat Intake in the Pathogenesis of Atherosclerosis and Atheromatosis in Humans and Animals (Review). P. 174–187

Версия для печати

Section: Medical and biological sciences




Vladimir N. Titov*, Tatʼyana A. Rozhkova*, Violetta I. Kaminnaya*
*National Medical Research Center of Cardiology (Moscow, Russian Federation)
Corresponding author: Vladimir Titov, address: 3-ya Cherepkovskaya 15-a, Moscow, 121552, Russian Federation; e-mail:


We believe that in the process of phylogenesis, seven biological functions were formed in consecutive order: trophology, homeostasis, endoecology, adaptation, perpetuation of the species, locomotion, and cognitive biological function (including intellect). The biological function of trophology (nutrition) is realized through the exotrophic (external nutrition) and endotrophic (internal nutrition) reactions. The endoecological function is realized through the biological reactions of excretion and inflammation. Its purpose is to prevent exceeding the upper limit of the physiological interval by any of the substrates, catabolites, or endogenous phlogogens. The underlying factor of pathogenesis of atherosclerosis is the predominance of meat in human diet, causing deficiency of polyunsaturated fatty acids (PUFAs) in the cells. Insulin initiates the transfer to the cells of oleic triglycerides (TGs) within olein apoE/B-100-containing very-low-density lipoproteins (VLDLs) and their absorption by cells; that is why low-density lipoproteins (LDLs) are not formed. The transfer of palmitic TGs into VLDLs is blocked under the conditions of their slow kinetic transformations into LDLs; this initiates retentional accumulation of palmitic LDLs in the blood. Partial utilization of ligand-free palmitic VLDLs→LDLs by monocytes, which occurs in the intima of elastic arteries, leads to the formation of atheromatosis. Atheromatous masses of the intima are, first of all, catabolites of PUFAs that cells failed to absorb within LDLs by way of apoB-100 endocytosis. Atherosclerosis, hyperlipoproteinemia, high LDL (LDL-C) content in the blood and PUFA deficiency in the cells are all disorders of the trophic function; atheromatosis of arterial intima is the result of only partial realization of the biological function of endoecology.


atherosclerosis, atheromatosis, insulin, biological functions, LDL-C, arterial intima
Download (pdf, 1.9MB )


1. Titov V.N. Filogeneticheskaya teoriya obshchey patologii. Patogenez metabolicheskikh pandemiy. Sakharnyy diabet [Phylogenetic Theory of General Pathology. Pathogenesis of Metabolic Pandemics. Diabetes]. Moscow, 2014. 222 p.
2. Titov V.N. Filogeneticheskaya teoriya obshchey patologii. Patogenez bolezney tsivilizatsii. Ateroskleroz [Phylogenetic Theory of General Pathology. Pathogenesis of Diseases of Civilization. Atherosclerosis]. Moscow, 2014. 238 p.
3. Ugolev A.M. Trofologiya – novaya mezhdistsiplinarnaya nauka [Trophology: A New Interdisciplinary Science]. Vestnik Akademii nauk SSSR, 1980, no. 1, pp. 50–61.
4. Getz G.S., Reardon C.A. Natural Killer T Cells in Atherosclerosis. Nat. Rev. Cardiol., 2017, vol. 14, no. 5, pp. 304–314.
5. Moutachakkir M., Lamrani Hanchi A., Baraou A., Boukhira A., Chellak S. Immunoanalytical Characteristics of C-Reactive Protein and High Sensitivity C-Reactive Protein. Ann. Biol. Clin. (Paris), 2017, vol. 75, no. 2, pp. 225–229.
6. Devaraj S., Singh U., Jialal I. The Evolving Role of C-Reactive Protein in Atherothrombosis. Clin. Chem., 2009, vol. 55, no. 2, pp. 229–238.
7. Xie F., Zhan R., Yan L.C., Gong J.B., Zhao Y., Ma J., Qian L.J. Diet-Induced Elevation of Circulating HSP70 May Trigger Cell Adhesion and Promote the Development of Atherosclerosis in Rats. Cell Stress Chaperones, 2016, vol. 21, no. 5, pp. 907–914.
8. Muller S. Autophagy, Autoimmunity and Autoimmune Diseases. Med. Sci. (Paris), 2017, vol. 33, no. 3, pp. 319–327.
9. Trubnikova O.A., Maleva O.V., Tarasova I.V., Mamontova A.S., Uchasova E.G., Barbarash O.L. Vliyanie statinov na razvitie ranney posleoperatsionnoy kognitivnoy disfunktsii u patsientov posle koronarnogo shuntirovaniya [Effect of Statins on Development of Early Cognitive Dysfunction After Coronary Artery Bypass Grafting]. Kardiologiya, 2015, vol. 55, no. 4, pp. 49–56.
10. Power S.E., O’Connor E.M., Ross R.P., Stanton C., O’Toole P.W., Fitzgerald G.F., Jeffery I.B. Dietary Glycaemic Load Associated with Cognitive Performance in Elderly Subjects. Eur. J. Nutr., 2015, vol. 54, no. 4, pp. 557–568.
11. Berendsen A.M., Kang J.H., van de Rest O., Feskens E.J.M., de Groot L.C.P.G.M., Grodstein F. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women. J. Am. Med. Dir. Assoc., 2017, vol. 18, no. 5, pp. 427–432.
12. Shenderov B.A. Mikrobiotsenozy cheloveka i funktsional’noe pitanie [Human Microbiocenosis and Functional Nutrition]. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii, 2001, vol. 11, no. 4, pp. 78–90.
13. Kim J.Y., Kang S.W. Relationships Between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents. J. Lifestyle Med., 2017, vol. 7, no. 1, pp. 10–17.
14. Zhao L., Fu Z., Wu J., Aylor K.W., Barrett E.J., Cao W., Liu Z. Globular Adiponectin Ameliorates Metabolic Insulin Resistance via AMPK-Mediated Restoration of Microvascular Insulin Responses. J. Physiol., 2015, vol. 593, no. 17, pp. 4067–4079.
15. Titov V.N. Edinaya etiologiya, razdel’nyy patogenez i osnovy profilaktiki ateroskleroza i ateromatoza. Vyrazhennye razlichiya perenosa zhirnykh kislot v lipoproteinakh v krovi travoyadnykh i plotoyadnykh zhivotnykh [Common Etiology, Different Pathogenesis and Basics of Atherosclerosis and Atheromatosis Prevention. Marked Differences in Lipoprotein-Mediated Fatty Acids Transport in Blood of Herbivores and Carnivores]. Mezhdunarodnyy zhurnal serdtsa i sosudistykh zabolevaniy, 2016, vol. 4, no. 12, pp. 26–43.
16. Rush T.M., Kritz-Silverstein D., Laughlin G.A., Fung T.T., Barrett-Connor E., McEvoy L.K. Association Between Dietary Sodium Intake and Cognitive Function in Older Adults. J. Nutr. Health Aging, 2017, vol. 21, no. 3, pp. 276–283.
17. Titov V.N., Emanuel’ V.L. Patogenez ateroskleroza aktivirovan, kogda filogeneticheski travoyadnye zhivotnye nachinayut v izbytke poedat’ myasnuyu (plotoyadnuyu) pishchu [Pathogenesis of Atherosclerosis Is Activated When Phylogenetically Herbivorous Animals Start Eating Meat in Excess]. Klincheskaya laboratornaya diagnostika, 2016, vol. 61, no. 9, p. 553.
18. Shnol’ S.E. Fiziko-khimicheskie faktory biologicheskoy evolyutsii [Physicochemical Factors of Biological Evolution]. Moscow, 1979. 270 p.
19. Kimming L.M., Karalis D.G. Do Omega-3 Polyunsaturated Fatty Acids Prevent Cardiovascular Disease? A Review of the Randomized Clinical Trials. Lipid Insights, 2013, vol. 6, pp. 13–20.
20. Weldon S.M., Mullen A.C., Loscher C.E., Hurley L.A., Roche H.M. Docosahexaenoic Acid Induces an Anti-Inflammatory Profile in Lipopolysaccharide-Stimulated Human THP-1 Macrophages More Effectively Than Eicosapentaenoic Acid. J. Nutr. Biochem., 2007, vol. 18, no. 4, pp. 250–258.
21. Sokolov E.I., Zykova A.A., Sushchik V.V., Goncharov I.N. Znachenie zhirnykh kislot v formirovanii tromboticheskogo statusa u bol’nykh ishemicheskoy bolezn’yu serdtsa [Role of Fatty Acids in the Formation of Thrombotic Status in Patients with Ischemic Heart Disease]. Kardiologiya, 2014, vol. 54, no. 5, pp. 16–21.
22. Singla D.K., Wang J., Singla R. Primary Human Monocytes Differentiate into M2 Macrophages and Involve Notch-1 Pathway. Can. J. Physiol. Pharmacol., 2017, vol. 95, no. 3, pp. 288–294.
23. Patel K., Tarkin J., Serruys P.W., Tenekecioglu E., Foin N., Zhang Y.J., Crake T., Moon J., Mathur A., Bourantas C.V. Invasive or Non-Invasive Imaging for Detecting High-Risk Coronary Lesions? Expert Rev. Cardiovasc. Ther., 2017, vol. 15, no. 3, pp. 165–179.
24. Jiang H., Liang C., Liu X., Jiang Q., He Z., Wu J., Pan X., Ren Y., Fan M., Li M., Wu Z. Palmitic Acid Promotes Endothelial Progenitor Cells Apoptosis via p38 and JNK Mitogen-Activated Protein Kinase Pathways. Atherosclerosis, 2010, vol. 210, no. 1, pp. 71–77.
25. Oliveira-Santos M., Castelo-Branco M., Silva R., Gomes A., Chichorro N., Abrunhosa A., Donato P., Pedroso de Lima J., Pego M., Gonçalves L., Ferreira M.J. Atherosclerotic Plaque Metabolism in High Cardiovascular Risk Subjects – A Subclinical Atherosclerosis Imaging Study with 18F-NaF PET-CT. Atherosclerosis, 2017, vol. 260, pp. 41–46.
26. Tian D., Qiu Y., Zhan Y., Li X., Zhi X., Wang X., Yin L., Ning Y. Overexpression of Steroidogenic Acute Regulatory Protein in Rat Aortic Endothelial Cells Attenuates Palmitic Acid-Induced Inflammation and Reduction in Nitric Oxide Bioavailability. Cardiovasc. Diabetol., 2012, vol. 11. Art. no. 144.
27. Handelsman Y., Shapiro M.D. Triglycerides, Atherosclerosis, and Cardiovascular Outcome Studies: Focus on Omega-3 Fatty Acids. Endocr. Pract., 2017, vol. 23, no. 1, pp. 100–112.
28. Marangoni F., Galli C., Ghiselli A., Lercker G., La Vecchia C., Maffeis C., Agostoni C., Ballardini D., Brignoli O., Faggiano P., Giacco R., Macca C., Magni P., Marelli G., Marrocco W., Miniello V.L., Mureddu G.F., Pellegrini N., Stella R., Troiano E., Verduci E., Volpe R., Poli A. Palm Oil and Human Health. Meeting Report of NFI: Nutrition Foundation of Italy Symposium. Int. J. Food Sci. Nutr., 2017, vol. 68, no. 6, pp. 643–655.
29. Poledne R., Jurčíková-Novotná L. Experimental Models of Hyperlipoproteinemia and Atherosclerosis. Physiol. Res., 2017, vol. 66 (suppl. 1), pp. S69–S75.
30. Sanadgol N., Mostafaie A., Mansouri K., Bahrami G. Effect of Palmitic Acid and Linoleic Acid on Expression of ICAM-1 and VCAM-1 in Human Bone Marrow Endothelial Cells (HBMECs). Arch. Med. Sci., 2012, vol. 8, no. 2, pp. 192–198.
31. Borén J., Williams K.J. The Central Role of Arterial Retention of Cholesterol-Rich Apolipoprotein-B-Containing Lipoproteins in the Pathogenesis of Atherosclerosis: A Triumph of Simplicity. Curr. Opin. Lipidol., 2016, vol. 27, no. 5, pp. 473–483.
32. Anzinger J.J., Chang J., Xu Q., Buono C., Li Y., Leyva F.J., Park B.C., Greene L.E., Kruth H.S. Native Low-Density Lipoprotein Uptake by Macrophage Colony-Stimulating Factor-Differentiated Human Macrophages Is Mediated by Macropinocytosis and Micropinocytosis. Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 10, pp. 2022–2031.
33. Meyrelles S.S., Peotta V.A., Pereira T.M., Vasquez E.C. Endothelial Dysfunction in the Apolipoprotein E-Deficient Mouse: Insights into the Influence of Diet, Gender and Aging. Lipids Health Dis., 2011, vol. 10, pp. 211–217.
34. Jawien J. The Role of an Experimental Model of Atherosclerosis: ApoE-Knockout Mice in Developing New Drugs Against Atherogenesis. Curr. Pharm. Biotechnol., 2012, vol. 13, no. 13, pp. 2435–2439.