CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Influence of Shivering, Hypothermia and Circadian Rhythms on the Features of Research Using Infrared Thermography in the Arctic (Review). P. 89–98

Версия для печати

Section: Review articles

UDC

[612.563+612.53](98)

DOI

10.17238/issn2542-1298.2020.8.1.89

Authors

Abdillah I. Nasution*/** ORCID: 0000-0003-1742-0362
Mikhail N. Pankov* ORCID: 0000-0003-3293-5751
Artem B. Kir’yanov* ORCID: 0000-0002-5594-6624
Larisa F. Startseva*** ORCID: 0000-0002-9928-5362
*Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russian Federation)
**Syiah Kuala University (Banda Aceh, Republic of Indonesia)
***State Institute of Drugs and Good Practices (Moscow, Russian Federation)
Corresponding author: Mikhail Pankov, address: proezd Badigina 3, Arkhangelsk, 163045, Russian Federation; e-mail: m.pankov@narfu.ru

Abstract

This article examines environmental factors typical of the Arctic regions that affect the results of thermographic studies, thereby limiting their range of application. Minor temperature deviations cause changes in radiation from the surface of the body and, thus, affect the analysis and interpretation of thermograms. What is more, to apply infrared thermography to measure the temperature of biological objects, it is necessary to understand the method’s technical and methodological features. At the same time, for research involving the local population, it is important to take into account changes in skin temperature under the influence of environmental factors. Geographically, the Arctic regions include Canada, Greenland, Iceland, Norway, Sweden, Finland, Alaska and northern areas of Russia where cold climate prevails. Cold climate, adverse weather conditions and long winter nights are among the many factors impeding investigations in the Arctic. For physiological research, it is important to consider ambient temperature as a factor affecting the quantitative assessment of the individual characteristics of the participants and adapt the resulting knowledge to complement student training programmes. This review focuses on shivering, hypothermia, and circadian rhythms as the effects of environmental factors that may influence the use of infrared thermography for research on physiology in the Arctic.
For citation: Nasution A.I., Pankov M.N., Kir’yanov A.B., Startseva L.F. Influence of Shivering, Hypothermia and Circadian Rhythms on the Features of Research Using Infrared Thermography in the Arctic (Review). Journal of Medical and Biological Research, 2020, vol. 8, no. 1, pp. 89–98. DOI: 10.17238/issn2542-1298.2020.8.1.89

Keywords

body temperature, infrared thermography, shivering, hypothermia, circadian rhythms, Arctic
Download (pdf, 0.5MB )

References

1. Romanovsky A.A. Skin Temperature: Its Role in Thermoregulation. Acta Physiol. (Oxf.), 2014, vol. 210, no. 3, pp. 498–507.
2. Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol., 2012, vol. 55, no. 4, pp. 221–235.
3. Durnovo E.A., Potekhina Yu.P., Marochkina M.S., Khomutnikova N.E., Yanova N.A. Vozmozhnosti infrakrasnoy termografii v kompleksnoy diagnostike zabolevaniy chelyustno-litsevoy oblasti [Features of Infrared Thermography in the Diagnosis of Complex Diseases of Maxillofacial Region]. Sovremennye problemy nauki i obrazovaniya, 2012, no. 4. Available at: http://science-education.ru/ru/article/view?id=6657 (accessed: 10 October 2018).
4. Khizhnyak L.N., Khizhnyak E.P., Ivanitskiy G.R. Diagnosticheskie vozmozhnosti matrichnoy infrakrasnoy termografii. Problemy i perspektivy [The Diagnostic Opportunities of Infrared Thermography. Problems and Prospects]. Vestnik novykh meditsinskikh tekhnologiy, 2012, vol. 19, no. 4, pp. 170–176.
5. Dekhtyarev Yu.P., Mironenko S.A., Dunaevskiy V.I., Venger E.F., Kotovskiy V.I., Timofeev V.I., Nazarchuk S.S., Solov’ev E.A. Termograficheskaya diagnostika zabolevaniy pozvonochnika u sportsmenov [Thermographic Diagnostics of Spine Diseases in Sportsmen]. Lechebnaya fizkul’tura i sportivnaya meditsina, 2013, no. 8, pp. 16–20.
6. Kartel’ A.A., Leshchenko V.G., Butsel’ A.Ch., Dudko M.A., Protsko A.Yu. Termografiya v diagnostike sinusitov [Thermography in the Diagnostics of Sinusitis]. Otorinolaringologiya. Vostochnaya Evropa, 2013, no. 2, pp. 84–89.
7. Kozhevnikova I.S., Pankov M.N., Startseva L.F., Afanasenkova N.V. Primenenie infrakrasnoy termografii pri sosudistoy patologii (kratkiy obzor) [Application of Infrared Thermography with Vascular Pathology (Brief Overview)]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy, 2017, no. 5-1, pp. 72–74.
8. Potekhina Yu.P., Kurnikov G.Yu., Golovanova M.V., Tkachenko Yu.A. Vozmozhnosti novykh tekhnologiy infrakrasnoy termografii v differentsial’noy diagnostike melanotsitarnykh obrazovaniy kozhi [The Opportunities of Infra-Red Thermography New Technology in Skin Melanocytic Formations Differential Diagnostics]. Vestnik esteticheskoy meditsiny, 2012, no. 2, pp. 83–88.
9. Urakova N.A., Urakov A.L. Infrakrasnaya termografiya golovki ploda – novyy metod diagnostiki v akusherstve [Infrared Thermography of Fetal Head as a New Diagnostic Method in Obstetrics]. Vestnik voenno-meditsinskoy akademii, 2014, no. 3, pp. 32–36.
10. Gerasimova N.N. Sovremennye vozmozhnosti luchevoy vizualizatsii limfaticheskikh uzlov v podmyshechnoy oblasti [Modern Possibilities of Radiological Imaging of Lymph Nodes in the Armpit]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy, 2016, no. 10-2, pp. 201–204.
11. Kozhevnikova I.S., Pankov M.N., Ermoshina N.A. Methods of Infrared Thermogram Processing and Analysis for Instant Diagnosis of Breast Cancer. J. Med. Biol. Res., 2017, vol. 5, no. 2, pp. 56–66. DOI: 10.17238/issn2542-1298.2017.5.2.56
12. Sheyko E.A., Kozel’ Yu.Yu., Triandafilidi E.I., Shikhlyarova A.I. Distantsionnaya infrakrasnaya termografiya kak vspomogatel’nyy metod v diagnostike i lechenii gemangiom u detey do goda [Remote Infrared Thermography as an Auxiliary Method in the Diagnosis and Treatment of Hemangiomas in Children Under One]. Mezhdunarodnyy zhurnal priklandnykh i fundamentalnykh issledovaniy, 2015, no. 9-2, pp. 302–304.
13. Parshikova S.A., Parshikov V.V. Neinvazivnye metody monitoringa ranevogo protsessa (obzor literatury). Perspektivy ikh primeneniya v chelyustno-litsevoy khirurgii u detey [Noninvasive Monitoring of Wounds Healing (Review). Prospects of Using in Children Facial Surgery]. Sovremennye problemy nauki i obrazovaniya, 2012, no. 2, p. 64.
14. Zaproudina N., Varmavuo V., Airaksinen O., Närhi M. Reproducibility of Infrared Thermography Measurements in Healthy Individuals. Physiol. Meas., 2008, vol. 29, no. 4, pp. 515–524.
15. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.Á., Sillero-Quintana M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review. Infrared Phys. Technol., 2015, vol. 71, pp. 28–55.
16. Ring E.F.J., Ammer K. The Technique of Infra Red Imaging in Medicine. Thermol. Int., 2000, vol. 10, no. 1, pp. 7–14.
17. Ammer K., Ring E.F.J. Standard Procedures for Infrared Imaging in Medicine. Diakides N.A., Bronzino J.D., Peterson D.R. (eds.). Medical Infrared Imaging. Boca Raton, 2007, pp. 32.1–32.14.
18. Berko J., Ingram D.D., Saha S., Parker J.D. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006–2010. Natl. Health Stat. Rep., 2014, vol. 30, no. 76, pp. 1–15.
19. Sikdar S.D., Khandelwal A., Ghom S., Diwan R., Debta F.M. Thermography: A New Diagnostic Tool in Dentistry. J. Indian Acad. Oral Med. Radiol., 2010. vol. 22, no. 4, pp. 206–210.
20. Comiso J.C., Hall D.K. Climate Trends in the Arctic as Observed from Space. WIREs Clim. Change, 2014, vol. 5, no. 3, pp. 389–409. DOI: 10.1002/wcc.277
21. Hedlund C., Blomstedt Y., Schumann B. Association of Climatic Factors with Infectious Diseases in the Arctic and Subarctic Region: A Systematic Review. Glob. Health Action, 2014, no. 7. Art. no. 24161. DOI: 10.3402/gha.v7.24161
22. Rossiya v tsifrakh. 2017 [Russia in Figures. 2017]. Moscow, 2017. 511 p.
23. International Students in Russia. Study in Russia: the Website of Ministry of Science and Higher Education of the Russian Federation. Available at: https://studyinrussia.ru/en/actual/articles/international-students-in-russia/ (accessed: 10 October 2018).
24. Niedzielska I., Pawelec S., Puszczewicz Z. The Employment of Thermographic Examinations in the Diagnostics of Diseases of the Paranasal Sinuses. Dentomaxillofac. Radiol., 2017, vol. 46, no. 6. Art. no. 20160367. DOI: 10.1259/dmfr.20160367
25. Cardone D., Merla A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences. Sensors (Basel), 2017, vol. 17, no. 5. Art. no. 1042. DOI: 10.3390/s17051042
26. Priego Quesada J.I., Martínez Guillamón N., Cibrián Ortiz de Anda R.M., Psikuta A., Annaheim S., Rossi R.M., Corberán Salvador J.M., Pérez-Soriano P., Salvador Palmer R. Effect of Perspiration on Skin Temperature Measurements by Infrared Thermography and Contact Thermometry During Aerobic Cycling. Infrared Phys. Technol., 2015, vol. 72, pp. 68–76. DOI: 10.1016/j.infrared.2015.07.008
27. Carpes F.P., Mello-Carpes P.B., Priego Quesada J.I., Pérez-Soriano P., Salvador Palmer R., Ortiz de Anda R.M.C. Insights on the Use of Thermography in Human Physiology Practical Classes. Adv. Physiol. Educ., 2018, vol. 42, no. 3, pp. 521–525. DOI: 10.1152/advan.00118.2018
28. Chiang M.F., Lin P.W., Lin L.F., Chiou H.Y., Chien C.W., Chu S.F., Chiu W.T. Mass Screening of Suspected Febrile Patients with Remote-Sensing Infrared Thermography: Alarm Temperature and Optimal Distance. J. Formos. Med. Assoc., 2008, vol. 107, no. 12, pp. 937–944.
29. van Marken Lichtenbelt W.D., Schrauwen P. Implications of Nonshivering Thermogenesis for Energy Balance Regulation in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 301, no. 2, pp. R285–R296.
30. Giesbrecht G.G., Sessler D.I., Mekjavic I.B., Schroeder M., Bristow G.K. Treatment of Mild Immersion Hypothermia by Direct Body-to-Body Contact. J. Appl. Physiol., 1994, vol. 76, no. 6, pp. 2373–2379.
31. Henneman E. Organization of the Motoneuron Pool: The Size Principle. Mountcastle V.B. (ed.). Medical Physiology. St. Louis, 1980, pp. 718–741.
32. Morrison S.F. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central Neural Pathways for Thermoregulatory Cold Defense. J. Appl. Physiol. (1985), 2011, vol. 110, no. 5, pp. 1137–1149. DOI: 10.1152/japplphysiol.01227.2010
33. Brychta R.J., Chen K.Y. Cold-Induced Thermogenesis in Humans. Eur. J. Clin. Nutr., 2017, vol. 71, no. 3, pp. 345–352. DOI: 10.1038/ejcn.2016.223; PMID: 27876809
34. Eyolfson D.A., Tikuisis P., Xu X., Weseen G., Giesbrecht G.G. Measurement and Prediction of Peak Shivering Intensity in Humans. Eur. J. Appl. Physiol., 2001, vol. 84, no. 1-2, pp. 100–106. DOI: 10.1007/s004210000329; PMID: 11394237
35. Haman F. Shivering in the Cold: From Mechanisms of Fuel Selection to Survival. J. Appl. Physiol. (1985), 2006, vol. 100, no. 5, pp. 1702–1708. DOI: 10.1152/japplphysiol.01088.2005; PMID: 16614367
36. Blondin D.P., Tingelstad H.C., Mantha O.L., Gosselin C., Haman F. Maintaining Thermogenesis in Cold Exposed Humans: Relying on Multiple Metabolic Pathways. Compr. Physiol., 2014, vol. 4, no. 4, pp. 1383–1402. DOI: 10.1002/cphy.c130043; PMID: 25428848
37. Mabuchi K., Kanbara O., Genno H., Chinzei T., Haeno S., Kunimoto M. Automatic Control of Optimum Ambient Thermal Conditions Using Feedback of Skin Temperature. Biomed. Thermol., 1997, no. 16, pp. 6–13.
38. Johnson J.M., Minson C.T., Kellogg D.L. Jr. Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation. Compr. Physiol., 2014, vol. 4, no. 1, pp. 33–89.
39. Zhang X., Zhang S., Wang C., Wang B., Guo P. Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators Among Cardiovascular and Cerebrovascular Patients. Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 3, pp. 2472–2487. DOI: 10.3390/ ijerph110302472
40. Prevent Hypothermia & Frostbite. Centers for Disease Control and Prevention. Available at: https://www.cdc. gov/disasters/winter/staysafe/hypothermia.html (accessed: 3 December 2012).
41. Saltenrich N. Between Extremes: Health Effects of Heat and Cold. Environ. Health Perspect., 2015, vol. 123, no. 11, pp. A276–A280.
42. Seuser A., Kurnik K., Mahlein A.-K. Infrared Thermography as a Non-Invasive Tool to Explore Differences in the Musculoskeletal System of Children with Hemophilia Compared to an Age-Matched Healthy Group. Sensors (Basel), 2018, vol. 18, no. 2. Art. no. 518. DOI: 10.3390/s18020518
43. Garagiola U., Giani E. Use of Telethermography in the Management of Sport Injuries. Sports Med., 1990. vol. 10, no. 4, pp. 267–272.
44. Cui J., Durand S., Levine B.D., Crandall C.G. Effect of Skin Surface Cooling on Central Venous Pressure During Orthostatic Challenge. Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 289, no. 6, pp. H2429–H2433.
45. Andreev R.S., Kalenov Yu.N., Yakushkin A.V., Akimov E.B., Son’kin V.D. Vozmozhnosti infrakrasnoy termografii po vyyavleniyu morfofunktsional’nykh kharakteristik cheloveka (detey i vzroslykh) [Application of Infrared Thermography to Identify Morphological and Functional Characteristics of а Person (Children and Adults)]. Vestnik Moskovskogo universiteta. Ser. 23: Antropologiya, 2016, no. 3, pp. 49–58.
46. Arendt J. Biological Rhythms During Residence in Polar Regions. Chronobiol. Int., 2012, vol. 29, no. 4, pp. 379–394.
47. Marqueze E.C., Vasconcelos S., Garefelt J., Skene D.J., Moreno C.R., Lowden A. Natural Light Exposure, Sleep and Depression Among Day Workers and Shift Workers at Arctic and Equatorial Latitudes. PLoS One, 2015, vol. 10, no. 4. Art. no. e0122078.
48. Ioannou S., Gallese V., Merla A. Thermal Infrared Imaging in Psychophysiology: Potentialities and Limits. Psychophysiology, 2014, vol. 51, no. 10, pp. 951–963.
49. Johnsen M.T., Wynn R., Bratlid T. Is There a Negative Impact of Winter on Mental Distress and Sleeping Problems in the Subarctic: The Tromsø Study. BMC Psychiatry, 2012, vol. 12. Art. no. 225.
50. Friborg O., Bjorvatn B., Amponsah B., Pallesen S. Associations Between Seasonal Variations in Day Length (Photoperiod), Sleep Timing, Sleep Quality and Mood: A Comparison Between Ghana (5°) and Norway (69°). J. Sleep Res., 2012, vol. 21, no. 2, pp. 176–184.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North