CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Potential Diagnostic Biomarkers of Glioma in the Liquid Media of the Body. P. 52–63

Версия для печати

Section: Review articles

UDC

616.831-006+616.832-006.484

DOI

10.37482/2687-1491-Z090

Authors

Ol’ga V. Krasnikova* ORCID: https://orcid.org/0000-0002-4425-1819
Anastasiya R. Kondrat’eva* ORCID: https://orcid.org/0000-0001-8450-4537
Simon Q. Badu* ORCID: https://orcid.org/0000-0001-9514-3810
Igor’ A. Medyanik* ORCID: https://orcid.org/0000-0002-7519-0959
Aleksandr S. Gordetsov* ORCID: https://orcid.org/0000-0002-4767-9108
*Privolzhsky Research Medical University (Nizhny Novgorod, Russian Federation)
Corresponding author: Ol’ga Krasnikova, address: ul. Rodionova 190a, Nizhny Novgorod, 603126, Russian Federation; e-mail: lala-g@yandex.ru

Abstract

Modern diagnosis of various forms of malignant brain tumours (gliomas) is primarily carried out by imaging methods, such as magnetic resonance imaging, electroencephalography, and positron emission tomography; brain biopsy is also used. The disadvantages of these methods are their inaccuracy and invasiveness, which entails certain risks for the patient’s health. Therefore, finding more reliable and safe methods for diagnosing gliomas, including their biomarkers in the blood and cerebrospinal fluid, is an urgent task. This review aimed to collect data on potential biomarkers of malignant brain tumours in body fluids, in particular, cerebrospinal fluid and blood, discovered so far and having diagnostic value. The information was searched for in the following databases: UpToDate, eLibrary, PubMed, Medline, and Scopus, as well as in the search engines Google Scholar and Web of Science. Materials from the website of the World Health Organization were also used. The review mainly included articles written over the past 5 years. We found information on such biomarkers as miRNA-15b and miRNA-125b, proline, YKL-40 glycoprotein, circDNA (circular DNA) and circRNA (circular RNA), extracellular vesicles, fatty acids, and fatty acid synthases. The authors conclude that the following biomarkers: YKL-40, circDNA, circRNA, and extracellular vesicles have a large evidence base and can already be used in clinical practice. Other biomarkers require more detailed and extensive studies.

Keywords

diagnosis of brain cancer, glioma biomarkers, blood, cerebrospinal fluid, liquid biopsy, YKL-40, extracellular nucleic acids, extracellular vesicles
Download (pdf, 0.5MB )

References

1. Louis D.N., Schiff D., Batchelor T. Classification and Pathologic Diagnosis of Gliomas. Available at: https://www.uptodate.com/contents/classification-and-pathologic-diagnosis-of-gliomas/ (accessed: 13 May 2021).
2. Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol., 2021, vol. 18, no. 3, pp. 170–186. DOI: 10.1038/s41571-020-00447-z
3. Gupta A., Dwivedi T. A Simplified Overview of World Health Organization Classification Update of Central Nervous System Tumors 2016. J. Neurosci. Rural Pract., 2017, vol. 8, no. 4, pp. 629–641. DOI: 10.4103/jnrp.jnrp_168_17
4. Batchelor T. Initial Treatment and Prognosis of Newly Diagnosed Glioblastoma in Adults. Available at: https://www.uptodate.com/contents/initial-treatment-and-prognosis-of-newly-diagnosed-glioblastoma-in-adults#... patients%20are%20managed%20with,two%20years%20in%20most%20patients/ (accessed: 13 May 2021).
5. Promoting Cancer Early Diagnosis. Available at: www.who.int/activities/promoting-cancer-early-diagnosis#: ~:text=Early%20diagnosis%20of%20cancer%20focuses,and%20higher%20costs%20of%20care/ (accessed: 13 May 2021).
6. Drappatz J., Avila E.K. Seizures in Patients with Primary and Metastatic Brain Tumors. Available at: https://www.uptodate.com/contents/seizures-in-patients-with-primary-and-metastatic-brain-tumors#:~:text=Seiz...
are%20a%20common%20and,disorder%20is%20usually%20made%20clinically/
(accessed: 13 May 2021).
7. Albert N.L., Weller M., Suchorska B., Galldiks N., Soffietti R., Kim M.M., la Fougère C., Pope W., Law I., Arbizu J., Chamberlain M.C., Vogelbaum M., Ellingson B.M., Tonn J.C. Response Assessment in Neuro-Oncology Working Group and European Association for Neuro-Oncology Recommendations for the Clinical Use of PET Imaging in Gliomas. Neuro Oncol., 2016, vol. 18, no. 9, pp. 1199–1208. DOI: 10.1093/neuonc/now058
8. Shankar G.M., Balaj L., Stott S.L., Nahed B., Carter B.S. Liquid Biopsy for Brain Tumors. Expert Rev. Mol. Diagn., 2017, vol. 17, no. 10, pp. 943–947. DOI: 10.1080/14737159.2017.1374854
9. Wang J., Bettegowda C. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms. J. Mol. Diagn., 2017, vol. 19, no. 1, pp. 24–34. DOI: 10.1016/j.jmoldx.2016.08.007
10. Don E.S., Tarasov A.V., Epshteyn O.I., Tarasov S.A. Biomarkery v meditsine: poisk, vybor, izuchenie i validatsiya [The Biomarkers in Medicine: Search, Choice, Study and Validation]. Klinicheskaya laboratornaya diagnostika, 2017, vol. 62, no. 1, pp. 52–59.
11. Califf R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. (Maywood), 2018, vol. 243, no. 3, pp. 213–221. DOI: 10.1177/1535370217750088
12. Müller Bark J., Kulasinghe A., Chua B., Day B.W., Punyadeera C. Circulating Biomarkers in Patients with Glioblastoma. Br. J. Cancer, 2020, vol. 122, no. 3, pp. 295–305. DOI: 10.1038/s41416-019-0603-6
13. Pandey R., Caflisch L., Lodi A., Brenner A.J., Tiziani S. Metabolomic Signature of Brain Cancer. Mol. Carcinog., 2017, vol. 56, no. 11, pp. 2355–2371. DOI: 10.1002/mc.22694
14. Vettore L., Westbrook R.L., Tennant D.A. New Aspects of Amino Acid Metabolism in Cancer. Br. J. Cancer, 2020, vol. 122, no. 2, pp. 150–156. DOI: 10.1038/s41416-019-0620-5
15. Waitkus M.S., Diplas B.H., Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell, 2018, vol. 34, no. 2, pp. 186–195. DOI: 10.1016/j.ccell.2018.04.011
16. Batchelor T., Louis D.N. Molecular Pathogenesis of Diffuse Gliomas. Available at: https://www.uptodate.com/ contents/molecular-pathogenesis-of-diffuse-gliomas (accessed: 13 May 2021).
17. Zhao S., Lin Y., Xu W., Jiang W., Zha Z., Wang P., Yu W., Li Z., Gong L., Peng Y., Ding J., Lei Q., Guan K.L., Xiong Y. Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α. Science, 2009, vol. 324, no. 5924, pp. 261–265. DOI: 10.1126/science.1170944
18. Mereiter S., Balmaña M., Campos D., Gomes J., Reis C.A. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell, 2019, vol. 36, no. 1, pp. 6–16. DOI: 10.1016/j.ccell.2019.06.006
19. Pinho S.S., Reis C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer, 2015, vol. 15, no. 9, pp. 540–555. DOI: 10.1038/nrc3982
20. Dusoswa S., Verhoeff J., Abels E., Breakefield X., Noske D., Würdinger T., Broekman M., Van Kooyk Y., Garcia-Vallejo J. TMIC-28. Glioblastoma Exploits Cell Surface Glycosylation-Mediated Immune Regulatory Circuits for Immune Escape. Neuro Oncol., 2018, vol. 20, suppl. 6, p. vi262. DOI: 10.1093/neuonc/noy148.1087
21. Tsuchiya N., Yamanaka R., Yajima N., Homma J., Sano M., Komata T., Ikeda T., Fujimoto I., Takahashi H., Tanaka R., Ikenaka K. Isolation and Characterization of an N-Linked Oligosaccharide That Is Increased in Glioblastoma Tissue and Cell Lines. Int. J. Oncol., 2005, vol. 27, no. 5, pp. 1231–1239.
22. Veillon L., Fakih C., Abou-El-Hassan H., Kobeissy F., Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem. Neurosci., 2018, vol. 9, no. 1, pp. 51–72. DOI: 10.1021/acschemneuro.7b00271
23. Linhares P., Carvalho B., Vaz R., Costa B.M. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int. J. Mol. Sci., 2020, vol. 21, no. 16. Art. no. 5809. DOI: 10.3390/ijms21165809
24. Qin G., Li X., Chen Z., Liao G., Su Y., Chen Y., Zhang W. Prognostic Value of YKL-40 in Patients with Glioblastoma: A Systematic Review and Meta-Analysis. Mol. Neurobiol., 2017, vol. 54, no. 5, pp. 3264–3270. DOI: 10.1007/s12035-016-9878-2
25. Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., Kinzler K.W., Vogelstein B., Diaz L.A. Jr. Circulating Mutant DNA to Assess Tumor Dynamics. Nat. Med., 2008, vol. 14, no. 9, pp. 985–990. DOI: 10.1038/nm.1789
26. Heidrich I., Ačkar L., Mossahebi Mohammadi P., Pantel K. Liquid Biopsies: Potential and Challenges. Int. J. Cancer, 2021, vol. 148, no. 3, pp. 528–545. DOI: 10.1002/ijc.33217
27. Alix-Panabières C. The Future of Liquid Biopsy. Nature, 2020, vol. 579, suppl. 9. DOI: 10.1038/d41586-020-00844-5
28. Liang J., Zhao W., Lu C., Liu D., Li P., Ye X., Zhao Y., Zhang J., Yang D. Next-Generation Sequencing Analysis of ctDNA for the Detection of Glioma and Metastatic Brain Tumors in Adults. Front. Neurol., 2020, vol. 11. Art. no. 544. DOI: 10.3389/fneur.2020.00544
29. Mouliere F., Chandrananda D., Piskorz A.M., Moore E.K., Morris J., Ahlborn L.B., Mair R., Goranova T., Marass F., Heider K., Wan J.C.M., Supernat A., Hudecova I., Gounaris I., Ros S., Jimenez-Linan M., Garcia-Corbacho J., Patel K., Østrup O., Murphy S., Eldridge M.D., Gale D., Stewart G.D., Burge J., Cooper W.N., van der Heijden M.S., Massie C.E., Watts C., Corrie P., Pacey S., Brindle K.M., Baird R.D., Mau-Sørensen M., Parkinson C.A., Smith C.G., Brenton J.D., Rosenfeld N. Enhanced Detection of Circulating Tumor DNA by Fragment Size Analysis. Sci. Transl.
Med., 2018, vol. 10, no. 466. DOI: 10.1126/scitranslmed.aat4921
30. Mouliere F., Mair R., Chandrananda D., Marass F., Smith C.G., Su J., Morris J., Watts C., Brindle K.M., Rosenfeld N. Detection of Cell‐Free DNA Fragmentation and Copy Number Alterations in Cerebrospinal Fluid from Glioma Patients. EMBO Mol. Med., 2018, vol. 10, no. 12. Art. no. e9323. DOI: 10.15252/emmm.201809323
31. Huang T.Y., Piunti A., Lulla R.R., Qi J., Horbinski C.M., Tomita T., James C.D., Shilatifard A., Saratsis A.M. Detection of Histone H3 Mutations in Cerebrospinal Fluid-Derived Tumor DNA from Children with Diffuse Midline Glioma. Acta Neuropathol. Commun., 2017, vol. 5, no. 1. Art. no. 28. DOI: 10.1186/s40478-017-0436-6
32. Sun J., Li B., Shu C., Ma Q., Wang J. Functions and Clinical Significance of Circular RNAs in Glioma. Mol. Cancer, 2020, no. 19. Art. no. 34. DOI: 10.1186/s12943-019-1121-0
33. Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Giusti S., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., Herzog M., Schreyer L., Papavasileiou P., Ivanov A., Öhman M., Refojo D., Kadener S., Rajewsky N. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell, 2015, vol. 58, no. 5, pp. 870–885. DOI: 10.1016/j.molcel.2015.03.027
34. Guarnerio J., Bezzi M., Jeong J.C., Paffenholz S.V., Berry K., Naldini M.M., Lo-Coco F., Tay Y., Beck A.H., Pandolfi P.P. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell, 2016, vol. 165, no. 4, pp. 1055–1056. DOI: 10.1016/j.cell.2016.07.035
35. Zhu J., Ye J., Zhang L., Xia L., Hu H., Jiang H., Wan Z., Sheng F., Ma Y., Li W., Qian J., Luo C. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis. Transl. Oncol., 2017, vol. 10, no. 2, pp. 271–279. DOI: 10.1016/j.tranon.2016.12.006
36. Chen A., Zhong L., Ju K., Lu T., Lv J., Cao H. Plasmatic circRNA Predicting the Occurrence of Human Glioblastoma. Cancer Manag. Res., 2020, no. 12, pp. 2917–2923. DOI: 10.2147/CMAR.S248621
37. Wen G., Zhou T., Gu W. The Potential of Using Blood Circular RNA as Liquid Biopsy Biomarker for Human Diseases. Protein Cell, 2020, vol. 12, no. 12, pp. 911–946. DOI: 10.1007/s13238-020-00799-3
38. Osti D., Del Bene M., Rappa G., Santos M., Matafora V., Richichi C., Faletti S., Beznoussenko G.V., Mironov A., Bachi A., Fornasari L., Bongetta D., Gaetani P., DiMeco F., Lorico A., Pelicci G. Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients. Clin. Cancer Res., 2019, vol. 25, no. 1, pp. 266–276. DOI: 10.1158/1078-0432.CCR-18-1941
39. van Niel G., D’Angelo G., Raposo G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol., 2018, vol. 19, no. 4, pp. 213–228. DOI: 10.1038/nrm.2017.125
40. Minciacchi V.R., Spinelli C., Reis-Sobreiro M., Cavallini L., You S., Zandian M., Li X., Mishra R., Chiarugi P., Adam R.M., Posadas E.M., Viglietto G., Freeman M.R., Cocucci E., Bhowmick N.A., Di Vizio D. MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Res., 2017, vol. 77, no. 9, pp. 2306–2317. DOI: 10.1158/0008-5472.CAN-16-2942
41. Quezada C., Torres Á., Niechi I., Uribe D., Contreras-Duarte S., Toledo F., San Martín R., Gutiérrez J., Sobrevia L. Role of Extracellular Vesicles in Glioma Progression. Mol. Aspects Med., 2018, no. 60, pp. 38–51. DOI: 10.1016/j.mam.2017.12.003
42. Mahmoudi K., Ezrin A., Hadjipanayis C. Small Extracellular Vesicles as Tumor Biomarkers for Glioblastoma. Mol. Aspects Med., 2015, no. 45, pp. 97–102. DOI: 10.1016/j.mam.2015.06.008
43. Lane R., Simon T., Vintu M., Solkin B., Koch B., Stewart N., Benstead-Hume G., Pearl F.M.G., Critchley G., Stebbing J., Giamas G. Cell-Derived Extracellular Vesicles Can Be Used as a Biomarker Reservoir for Glioblastoma Tumor Subtyping. Commun. Biol., 2019, no. 2. Art. no. 315. DOI: 10.1038/s42003-019-0560-x
44. Mallawaaratchy D.M., Hallal S., Russell B., Ly L., Ebrahimkhani S., Wei H., Christopherson R.I., Buckland M.E., Kaufman K.L. Comprehensive Proteome Profiling of Glioblastoma-Derived Extracellular Vesicles Identifies Markers for More Aggressive Disease. J. Neurooncol., 2017, vol. 131, no. 2, pp. 233–244. DOI: 10.1007/s11060-016-2298-3
45. Guo D., Bell E.H., Chakravarti A. Lipid Metabolism Emerges as a Promising Target for Malignant Glioma Therapy. CNS Oncol., 2013, vol. 2, no. 3, pp. 289–299. DOI: 10.2217/cns.13.20
46. Ricklefs F., Mineo M., Rooj A.K., Nakano I., Charest A., Weissleder R., Breakefield X.O., Chiocca E.A., Godlewski J., Bronisz A. Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-Oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Res., 2016, vol. 76, no. 10, pp. 2876–2881. DOI: 10.1158/0008-5472.CAN-15-3432
47. Taïb B., Aboussalah A.M., Moniruzzaman M., Chen S., Haughey N.J., Kim S.F., Ahima R.S. Lipid Accumulation and Oxidation in Glioblastoma Multiforme. Sci. Rep., 2019, vol. 9, no. 1. Art. no. 19593. DOI: 10.1038/s41598-019-55985-z
48. Mulvihill M.M., Nomura D.K. Therapeutic Potential of Monoacylglycerol Lipase Inhibitors. Life Sci., 2013, vol. 92, no. 8-9, pp. 492–497. DOI: 10.1016/j.lfs.2012.10.025
49. Ricklefs F.L., Maire C.L., Matschke J., Dührsen L., Sauvigny T., Holz M., Kolbe K., Peine S., Herold-Mende C., Carter B., Chiocca E.A., Lawler S.E., Westphal M., Lamszus K. FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles. Int. J. Mol. Sci., 2020, vol. 21, no. 6. Art. no. 1931. DOI: 10.3390/ijms21061931
50. Mishra S., Yadav T., Rani V. Exploring miRNA Based Approaches in Cancer Diagnostics and Therapeutics. Crit. Rev. Oncol. Hematol., 2016, no. 98, pp. 12–23. DOI: 10.1016/j.critrevonc.2015.10.003
51. Ma C., Nguyen H.P.T., Luwor R.B., Stylli S.S., Gogos A., Paradiso L., Kaye A.H., Morokoff A.P. A Comprehensive Meta-Analysis of Circulation miRNAs in Glioma as Potential Diagnostic Biomarker. PLoS One, 2018, vol. 13, no. 2. Art. no. e0189452. DOI: 10.1371/journal.pone.0189452
52. Di Leva G., Garofalo M., Croce C.M. MicroRNAs in Cancer. Annu. Rev. Pathol., 2014, vol. 9, pp. 287–314. DOI: 10.1146/annurev-pathol-012513-104715



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North