CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Granulation Tissue as a Type of Connective Tissue (Review). P. 167-179

Версия для печати

Section: Review articles

UDC

612.79:616.5-003.92

DOI

10.37482/2687-1491-Z098

Authors

Varvara G. Nikonorova* ORCID: https://orcid.org/0000-0001-9453-4262Vladimir
V. Krishtop* ORCID: https://orcid.org/0000-0002-9267-5800Tat’yana
A. Rumyantseva** ORCID: https://orcid.org/0000-0002-8035-4065

*ITMO University (St. Petersburg, Russian Federation)
**Yaroslavl State Medical University (Yaroslavl, Russian Federation)

Abstract

Currently, there is no consensus among scientists on the place of scar tissue and, in particular, granulation tissue in the classification of fibrous connective tissue. This paper aimed to generalize literature data on the structure and development of fibrous scar tissue. It is demonstrated that granulation tissue is mostly composed of myofibroblasts, along with fibroblasts, as well as old fibroblasts, endothelial cells, and immune cells. Myofibroblasts are characterized by a developed cytoskeleton represented by stress fibers, which ensures active migration of these cells and remodelling of the surrounding intercellular substance. The developed synthetic apparatus of the myofibroblast, in addition to synthesis of the intercellular substance, provides cell paracrine activity, which maintains the homeostasis of the cellular components of granulation tissue. The intercellular substance is represented by type III collagen fibers; elastic fibers are absent. The ground substance has a high degree of hydration and low stiffness and is rich in glycosaminoglycans, collagenases and fibronectin; this greatly facilitates the migration of myofibroblasts, endotheliocytes and fibrocytes. The ability of the intercellular substance to accumulate growth factors plays an important role in the transdifferentiation of fibrocytes into myofibroblasts. The blood vessels of the granulation tissue are the source of fibrocytes, which play a key role in the formation of granules of the newly formed tissue around the vessel. Myofibroblast apoptosis triggers the differentiation of granulation tissue into dense fibrous loose connective tissue. At the same time, type III collagen is replaced by type I collagen, elastin fibers appear, angiogenesis is inhibited, and mechanisms providing sympathetic innervation of connective tissue are triggered. Thus, granulation tissue can be considered as temporary connective tissue, which is one of the examples of dedifferentiation that occurs not only at the cellular, but also at the tissue level.

Keywords

fibroblast, myofibroblast, connective tissue, scars, skin, structure of granulation tissue, functions of granulation tissue
Download (pdf, 0.6MB )

References

1. Grigorova A.N., Vladimirova O.V., Minaev S.V., Sirak A.G., Dolgashova M.A., Lyubanskaya O.V., Magomedova O.G. Rol’ morfofunktsional’nykh vzaimodeystviy kletochnykh struktur soedinitel’noy tkani v patogeneze patologicheskogo rubtseobrazovaniya u detey [The Role of Morphofunctional Interactions of Cellular Structures of Connective Tissue in the Pathogenesis of Pathological Scarring in Children]. Forcipe, 2020, vol. 3, no. S2, pp. 45–48. 2. Markelova M.V., Reznik L.B., Kononov A.V., Dzyuba G.G., Silant’ev V.N., Turushev M.A., Kuznetsov N.K. Radiofrequency Ablation Effect on Histo- and Fibroarchitectonics of Plantar Aponeurosis in Dogs with Fasciopathy Simulated by Alprostadil. J. Anat. Histopathol., 2020, vol. 9, no. 1, pp. 56–63 (in Russ.). DOI: 10.18499/2225-7357-2020-9-1-56-63 3. Vorontsova Z.A., Nozdrevatykh A.A., Obraztsova A.E. Eksperimental’no-klinicheskoe obosnovanie ispol’zovaniya mazi ebermin v mestnom lechenii ran (kratkiy obzor literatury) [Experimental and Clinical Justification of the Use of Hebermin Ointment in Local Treatment of Wounds (Brief Literature Report)]. Vestnik novykh meditsinskikh tekhnologiy, 2021, vol. 28, no. 1, pp. 41–44. DOI: 10.24412/1609-2163-2021-1-41-44 4.Kovalov G.A., Chizh N.A., Volina V.V., Belochkina I.V., Mikhailova I.P., Musatova I.B. Morphological Investigation of Tissues Following Experimental Mine-Blast Trauma. Morfologiya, 2019, vol. 13, no. 2, pp. 45–53 (in Russ.). DOI: 10.26641/1997-9665.2019.2.45-53 5. Fistal’ E.Ya., Popandopulo A.G., Soloshenko V.V., Movchan K.N., Romanenkov N.S., Yakovenko O.I., Gedgafov R.M. Ob effektivnosti kletochnykh tekhnologiy pri plasticheskom zakrytii obshirnykh defektov myagkikh tkaney [About the Effectiveness of Cell Technologies in Extensive Soft Tissue Defects Plasty]. Vestnik Rossiyskoy voenno-meditsinskoy akademii, 2020, no. 3, pp. 88–92. 6. Gimranov V.V., Giniyatullin I.T. Vliyanie subtilinovoy mazi na morfologicheskie pokazateli zazhivleniya ran u krolikov [Effect of Subtilin Ointment on Morphological Indicators of Wound Healing in Rabbit]. Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta, 2019, no. 4, pp. 80–85. DOI: 10.31563/1684-7628-2019-52-4-80-86 7. Shapovalova E.Yu., Demyashkin G.A., Boyko T.A., Baranovskiy Yu.G., Morozova M.N., Baranovskiy A.G., Ageeva E.S. Influence of Auto- and Xenogeneic Fibroblasts and Dermal Equivalent on Macrophage Content in Granulation Tissue of Ischemic Cutaneous Wound on the 12 Day of Regenerative Histogenesis. Meditsinskiy vestnik Severnogo Kavkaza, 2019, vol. 14, no. 1-2, pp. 255–260 (in Russ.). DOI: 10.14300/mnnc.2019.14028 8. Martin P., Nunan R. Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing. Br. J. Dermatol., 2015, vol. 173, no. 2, pp. 370–378. DOI: 10.1111/bjd.13954 9. Gilevich I.V., Sotnichenko A.S., Polyakov A.V., Bogdanov S.B., Melkonyan K.I., Medvedeva L.A., Porkhanov V.A. Morfologicheskiy analiz rezul’tatov kompleksnogo podkhoda k lecheniyu ozhogovoy rany s primeneniem dermal’nykh fibroblastov [Morphological Analysis of the Results of an Integrated Approach to the Treatment of Burn Wounds Using Dermal Fibroblasts]. Geny i Kletki, 2019, vol. 14, no. S, pp. 61–62. 10. Mazini L., Rochette L., Admou B., Amal S., Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int. J. Mol. Sci., 2020, vol. 21, no. 4. Art. no. 1306. DOI: 10.3390/ijms21041306 11. Fan D., Xia Q., Wu S., Ye S., Liu L., Wang W., Guo X., Liu Z. Mesenchymal Stem Cells in the Treatment of Cesarean Section Skin Scars: Study Protocol for a Randomized, Controlled Trial. Trials, 2018, vol. 19, no. 1. Art. no. 155. DOI: 10.1186/s13063-018-2478-x 12. Lassance L., Marino G.K., Medeiros C.S., Thangavadivel S., Wilson S.E. Fibrocyte Migration, Differentiation and Apoptosis During the Corneal Wound Healing Response to Injury. Exp. Eye Res., 2018, vol. 170, pp. 177–187. DOI: 10.1016/j.exer.2018.02.018 13. Yang L., Scott P.G., Dodd C., Medina A., Jiao H., Shankowsky H.A., Ghahary A., Tredget E.E. Identification of Fibrocytes in Postburn Hypertrophic Scar. Wound Repair Regen., 2005, vol. 13, no. 4, pp. 398–404. DOI: 10.1111/j.1067-1927.2005.130407.x 14. Roife D., Fleming J.B., Gomer R.H. Fibrocytes in the Tumor Microenvironment. Adv. Exp. Med. Biol., 2020, vol. 1224, pp. 79–85. DOI: 10.1007/978-3-030-35723-8_6 15. Zhang K., Yang X., Zhao Q., Li Z., Fu F., Zhang H., Zheng M., Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells Int., 2020, vol. 2020. Art. no. 8892300. DOI: 10.1155/2020/8892300 16. Alibardi L. Ultrastructural Analysis of Early Regenerating Lizard Tail Suggests That a Process of Dedifferentiation Is Involved in the Formation of the Regenerative Blastema. J. Morphol., 2018, vol. 279, no. 8, pp. 1171–1184. DOI: 10.1002/jmor.20838 17. Dai Y., Jin K., Feng X., Ye J., Gao C. Regeneration of Different Types of Tissues Depends on the Interplay of Stem Cells-Laden Constructs and Microenvironments in vivo. Mater. Sci. Eng. C Mater. Biol. Appl., 2019, vol. 94, pp. 938–948. DOI: 10.1016/j.msec.2018.10.035 18. Alhajj M., Bansal P., Goyal A. Physiology, Granulation Tissue. StatPearls. Treasure Island, 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK554402/ (accessed: 30 October 2021). 19. Pakshir P., Hinz B. The Big Five in Fibrosis: Macrophages, Myofibroblasts, Matrix, Mechanics, and Miscommunication. Matrix Biol., 2018, vols. 68–69, pp. 81–93. DOI: 10.1016/j.matbio.2018.01.019 20. Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell, 2008, vol. 134, no. 4, pp. 657–667. DOI: 10.1016/j.cell.2008.06.049 21. Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.-M., Vijg J., Van Steeg H., Dollé M.E., Hoeijmakers J.H., de Bruin A., Hara E., Campisi J. An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA. Dev. Cell, 2014, vol. 31, no. 6, pp. 722–733. DOI: 10.1016/j.devcel.2014.11.012 22. Hoare M., Ito Y., Kang T.W., Weekes M.P., Matheson N.J., Patten D.A., Shetty S., Parry A.J., Menon S., Salama R., Antrobus R., Tomimatsu K., Howat W., Lehner P.J., Zender L., Narita M. NOTCH1 Mediates a Switch Between Two Distinct Secretomes During Senescence. Nat. Cell Biol., 2016, vol. 18, no. 9, pp. 979– 992. DOI: 10.1038/ncb3397 23. Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitah S.A., Zender L., Gil J. A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence. Nat. Cell Biol., 2013, vol. 15, no. 8, pp. 978– 990. DOI: 10.1038/ncb2784Журнал медико-биологических исследований Никонорова В.Г. и др.2022. Т. 10, No 2. С. 167–179 Грануляционная ткань как разновидность соединительных тканей (обзор) 24. Nelson G., Wordsworth J., Wang C., Jurk D., Lawless C., Martin-Ruiz C., von Zglinicki T. A Senescent Cell Bystander Effect: Senescence-Induced Senescence. Aging Cell, 2012, vol. 11, no. 2, pp. 345– 349. DOI: 10.1111/j.1474-9726.2012.00795.x 25. Schafer M.J., White T.A., Iijima K., Haak A.J., Ligresti G., Atkinson E.J., Oberg A.L., Birch J., Salmonowicz H.,Zhu Y., Mazula D.L., Brooks R.W., Fuhrmann-Stroissnigg H., Pirtskhalava T., Prakash Y.S., Tchkonia T., Robbins P.D., Aubry M.C., Passos J.F., Kirkland J.L., Tschumperlin D.J., Kita H., LeBrasseur N.K. Cellular Senescence Mediates Fibrotic Pulmonary Disease. Nat. Commun., 2017, vol. 8. Art. no. 14532. DOI: 10.1038/ncomms14532 26. Ribatti D., Tamma R. Giulio Gabbiani and the Discovery of Myofibroblasts. Inflamm. Res., 2019, vol. 68, no. 3, pp. 241–245. DOI: 10.1007/s00011-018-01211-x 27. Kattan W.M., Alarfaj S.F., Alnooh B.M., Alsaif H.F., Alabdul Karim H.S., Al-Qattan N.M., Al-Qattan M.M., El-Sayed A.A. Myofibroblast-Mediated Contraction. J. Coll. Physicians Surg. Pak., 2017, vol. 27, no. 1, pp. 38–43. 28. Bagalad B.S., Mohan Kumar K.P., Puneeth H.K. Myofibroblasts: Master of Disguise. J. Oral Maxillofac. Pathol., 2017, vol. 21, no. 3, pp. 462–463. DOI: 10.4103/jomfp.JOMFP_146_15 29. Yuan Q., Tan R.J., Liu Y. Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation. Adv. Exp. Med. Biol., 2019, vol. 1165, pp. 253–283. DOI: 10.1007/978-981-13-8871-2_12 30. Salton F., Volpe M.C., Confalonieri M. Epithelial–Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina (Kaunas), 2019, vol. 55, no. 4. Art. no. 83. DOI: 10.3390/medicina55040083 31. Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical Tension Controls Granulation Tissue Contractile Activity and Myofibroblast Differentiation. Am. J. Pathol., 2001, vol. 159, no. 3, pp. 1009–1020. DOI: 10.1016/S0002-9440(10)61776-2 32. Darby I.A., Laverdet B., Bonté F., Desmoulière A. Fibroblasts and Myofibroblasts in Wound Healing. Clin. Cosmet. Investig. Dermatol., 2014, vol. 7, pp. 301–311. DOI: 10.2147/CCID.S50046 33. Hinz B. Formation and Function of the Myofibroblast During Tissue Repair. J. Invest. Dermatol., 2007, vol. 127, no. 3, pp. 526–537. DOI: 10.1038/sj.jid.5700613 34. Razdan N., Vasilopoulos T., Herbig U. Telomere Dysfunction Promotes Transdifferentiation of Human Fibroblasts into Myofibroblasts. Aging Cell, 2018, vol. 17, no. 6. Art. no. e12838. DOI: 10.1111/acel.12838 35. Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling. Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 349–363. DOI: 10.1038/nrm809 36. Petrov V.V., van Pelt J.F., Vermeesch J.R., Van Duppen V.J., Vekemans K., Fagard R.H., Lijnen P.J. TGF-β1-Induced Cardiac Myofibroblasts Are Nonproliferating Functional Cells Carrying DNA Damages. Exp. Cell Res., 2008, vol. 314, no. 7, pp. 1480–1494. DOI: 10.1016/j.yexcr.2008.01.014 37. Shook B.A., Wasko R.R., Mano O., Rutenberg-Schoenberg M., Rudolph M.C., Zirak B., Rivera-Gonzalez G.C., López-Giráldez F., Zarini S., Rezza A., Clark D.A., Rendl M., Rosenblum M.D., Gerstein M.B., Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 2020, vol. 26, no. 6, pp. 880–895. Art. no. e6. DOI: 10.1016/j.stem.2020.03.013 38. Breen E., Tang K., Olfert M., Knapp A., Wagner P. Skeletal Muscle Capillarity During Hypoxia: VEGF and Its Activation. High Alt. Med. Biol., 2008, vol. 9, no. 2, pp. 158–166. DOI: 10.1089/ham.2008.1010 39. Filippova O.V., Afonichev K.A., Krasnogorsky I.N., Vashetko R.V.Clinical and Morphological Characteristics of the Vascular Bed of Hypertrophic Scar Tissue in Different Periods of Its Formation. Pediatr. Traumatol. Orthop. Reconstr. Surg., 2017, vol. 5, no. 3, pp. 25–35. DOI: 10.17816/PTORS5325-36 40. Ma J., Wang Q., Fei T., Han J.-D.J., Chen Y.-G. MCP-1 Mediates TGF-β-Induced Angiogenesis by Stimulating Vascular Smooth Muscle Cell Migration. Blood, 2007, vol. 109, no.3, pp. 987–994. DOI: 10.1182/blood-2006-07-036400 41. Wallace H.A., Basehore B.M., Zito P.M. Wound Healing Phases. StatPearls. Treasure Island, 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK470443/(accessed: 15 November 2021). 42. Komi D.E.A., Khomtchouk K., Santa Maria P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol., 2020, vol. 58, no. 3, pp. 298–312. DOI: 10.1007/s12016-019-08729-w 43. Ellis S., Lin E.J., Tartar D. Immunology of Wound Healing. Curr. Dermatol. Rep., 2018, vol. 7, no. 4, pp. 350–358. DOI: 10.1007/s13671-018-0234-9 44. Dudas M., Wysocki A., Gelpi B., Tuan T.-L. Memory Encoded Throughout Our Bodies: Molecular and Cellular Basis of Tissue Regeneration. Pediatr. Res., 2008, vol. 63, no. 5, pp. 502–512. DOI: 10.1203/PDR.0b013e31816a7453 45. Wipff P.-J., Rifkin D.B., Meister J.-J., Hinz B. Myofibroblast Contraction Activates Latent TGF-β1 from the Extracellular Matrix. J. Cell Biol., 2007, vol. 179, no. 6, pp. 1311–1323. DOI: 10.1083/jcb.200704042Nikanorova V.G. et al. Journal of Medical and Biological ResearchGranulation Tissue as a Type of Connective Tissue (Review) 2022, vol. 10, no. 2, pp. 167–179 46. Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion. Cell Motil. Cytoskeleton, 2005, vol. 60, no. 1, pp. 24–34. DOI: 10.1002/cm.20041 47. Iglin V.A., Sokolovskaya O.A., Morozova S.M., Kuchur O.A., Nikonorova V.G., Sharsheeva A., Chrishtop V.V., Vinogradov A.V. Effect of Sol–Gel Alumina Biocomposite on the Viability and Morphology of Dermal Human Fibroblast Cells. ACS Biomater. Sci. Eng., 2020, vol. 6, no. 8, pp. 4397–4400. DOI: 10.1021/acsbiomaterials.0c00721 48. Goffin J.M., Pittet P., Csucs G., Lussi J.W., Meister J.-J., Hinz B. Focal Adhesion Size Controls Tension-Dependent Recruitment of α-Smooth Muscle Actin to Stress Fibers. J. Cell Biol., 2006, vol. 172, no. 2, pp. 259–268. DOI: 10.1083/jcb.200506179 49. Aarabi S., Bhatt K.A., Shi Y., Paterno J., Chang E.I., Loh S.A., Holmes J.W., Longaker M.T., Yee H.,Gurtner G.C. Mechanical Load Initiates Hypertrophic Scar Formation Through Decreased Cellular Apoptosis. FASEB J., 2007, vol. 21, no. 12, pp. 3250–3261. DOI: 10.1096/fj.07-8218com 50. Schultz S.S. Adult Stem Cell Application in Spinal Cord Injury. Curr. Drug Targets, 2005, vol. 6, no. 1, pp. 63–73. DOI: 10.2174/1389450053345046 51. Macri L., Silverstein D., Clark R.A.F. Growth Factor Binding to the Pericellular Matrix and Its Importance in Tissue Engineering. Adv. Drug Deliv. Rev., 2007, vol. 59, no. 13, pp. 1366–1381. DOI: 10.1016/j.addr.2007.08.015 52. Lee H.J., Jang Y.J. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int. J. Mol. Sci., 2018, vol. 19, no. 3. Art. no. 711. DOI: 10.3390/ijms19030711 53. Kumar I., Staton C.A., Cross S.S., Reed M.W., Brown N.J. Angiogenesis, Vascular Endothelial Growth Factor and Its Receptors in Human Surgical Wounds. Br. J. Surg., 2009, vol. 96, no. 12, pp. 1484–1491. DOI:10.1002/bjs.6778 54. McCarty M.F., Bielenberg D.R., Nilsson M.B., Gershenwald J.E., Barnhill R.L., Ahearne P., Bucana C.D., Fidler I.J. Epidermal Hyperplasia Overlying Human Melanoma Correlates with Tumour Depth and Angiogenesis. Melanoma Res., 2003, vol. 13, no. 4, pp. 379–387. DOI: 10.1097/00008390-200308000-00007 55. Shaw T.J., Martin P. Wound Repair at a Glance. J. Cell Sci., 2009, vol. 122, pt. 18, pp. 3209–3213. DOI: 10.1242/jcs.031187



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North