CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Physiological Bases of Goal-Directed Fluid Therapy in Cardiac Surgery (Review). P. 108-121

Версия для печати

Section: Review articles

UDC

616-08

DOI

10.37482/2687-1491-Z133

Authors

Dmitriy A. Volkov*/** ORCID: https://orcid.org/0000-0003-1558-9391
Mikhail Yu. Kirov*/** ORCID: https://orcid.org/0000-0002-4375-3374

*Northern State Medical University (Arkhangelsk, Russian Federation)
**City Clinical Hospital No. 1 named after E.E. Volosevich (Arkhangelsk, Russian Federation)

Corresponding author: Dmitriy Volkov, address: prosp. Troitskiy 51, Arkhangelsk, 163000, Russian Federation; e-mail: dmitrii_volkov_93@mail.ru

Abstract

Goal-directed fluid therapy is a paradigm in perioperative medicine, which includes haemodynamic monitoring and individualized haemodynamic management in high-risk patients by means of fluid therapy. This approach has certain benefits compared with the traditional model of fluid therapy during the perioperative period of cardiac surgery. The required fluid volume can be hard to determine. Traditionally, fluid therapy was guided by static preload parameters, such as central venous pressure and pulmonary artery occlusion pressure, which failed to provide adequate precision. In opposition to static parameters, a number of dynamic indices and tests were developed to assess fluid responsiveness. The cornerstone of dynamic indices are cyclic preload changes due to intrathoracic pressure variations during mechanical ventilation. Dynamic tests are circulatory stress tests involving preload changes. The most frequently used tests are passive leg raise, fluid challenge test, and some others. However, in spite of their satisfactory predictive value, dynamic indices and tests have certain limitations, which must be taken into consideration. For instance, mechanical ventilation, sinus rhythm, intact thorax, and normal respiratory mechanics are obligatory conditions for applying dynamic indices. Thus, using dynamic indices can be difficult in cardiac surgery, making the search for new methods to overcome their limitations highly important.

Keywords

cardiac surgery, fluid therapy, fluid responsiveness, fluid challenge, passive leg raise, cardiac output, volume status
Download (pdf, 0.9MB )

References

  1. Kendrick J.B., Kaye A.D., Tong Y., Belani K., Urman R.D., Hoffman C., Liu H. Goal-Directed Fluid Therapy in the Perioperative Setting. J. Anaesthesiol. Clin. Pharmacol., 2019, vol. 35, suppl. 1, pp. S29–S34. DOI: 10.4103/joacp. joacp_26_18
  2. Aya H.D., Cecconi M., Hamilton M., Rhodes A. Goal-Directed Therapy in Cardiac Surgery: A Systematic Review and Meta-Analysis. Br. J. Anaesth., 2013, vol. 110, no. 4, pp. 510–517. DOI: 10.1093/bja/aet020
  3. Li P., Qu L.-P., Qi D., Shen B., Wang Y.-M., Xu J.-R., Jiang W.-H., Zhang H., Ding X.-Q., Teng J. Significance of Perioperative Goal-Directed Hemodynamic Approach in Preventing Postoperative Complications in Patients After Cardiac Surgery: A Meta-Analysis and Systematic Review. Ann. Med., 2017, vol. 49, no. 4, pp. 343–351. DOI: 10.1080/07853890.2016.1271956
  4. Moazzami K., Dolmatova E., Maher J., Gerula C., Sambol J., Klapholz M., Waller A.H. In-Hospital Outcomes and Complications of Coronary Artery Bypass Grafting in the United States Between 2008 and 2012. J. Cardiothorac. Vasc. Anesth., 2017, vol. 31, no. 1, pp. 19–25. DOI: 10.1053/j.jvca.2016.08.008
  5. Benes J., Kirov M., Kuzkov V., Lainscak M., Molnar Z., Voga G., Monnet X. Fluid Therapy: Double-Edged Sword During Critical Care? BioMed. Res. Int., 2015, vol. 2015. Art. no. 729075. DOI: 10.1155/2015/729075
  6. Sequeira V., van der Velden J. The Frank–Starling Law: A Jigsaw of Titin Proportions. Biophys. Rev., 2017, vol. 9, no. 3, pp. 259–267. DOI: 10.1007/s12551-017-0272-8
  7. Marik P.E., Cavallazzi R. Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense. Crit. Care Med., 2013, vol. 41, no. 7, pp. 1774–1781. DOI: 10.1097/CCM.0b013e31828a25fd
  8. Monnet X., Marik P.E., Teboul J.-L. Prediction of Fluid Responsiveness: An Update. Ann. Intensive Care, 2016, vol. 6, no. 1. Art. no. 111. DOI: 10.1186/s13613-016-0216-7
  9. Michard F., Teboul J.-L. Predicting Fluid Responsiveness in ICU Patients: A Critical Analysis of the Evidence. Chest, 2002, vol. 121, no. 6, pp. 2000–2008. DOI: 10.1378/chest.121.6.2000
  10. Perel A., Pizov R., Cotev S. Systolic Blood Pressure Variation Is a Sensitive Indicator of Hypovolemia in Ventilated Dogs Subjected to Graded Hemorrhage. Anesthesiology, 1987, vol. 67, no. 4, pp. 498–502. DOI: 10.1097/00000542-198710000-00009
  11. Kramer A., Zygun D., Hawes H., Easton P., Ferland A. Pulse Pressure Variation Predicts Fluid Responsiveness Following Coronary Artery Bypass Surgery. Chest, 2004, vol. 126, no. 5, pp. 1563–1568. DOI: 10.1378/chest.126.5.1563
  12. Michard F., Teboul J.-L. Using Heart–Lung Interactions to Assess Fluid Responsiveness During Mechanical Ventilation. Crit. Care, 2000, vol. 4, no. 5. Art. no. 282. DOI: 10.1186/cc710
  13. Teboul J.-L., Monnet X., Chemla D., Michard F. Arterial Pulse Pressure Variation with Mechanical Ventilation. Am. J. Respir. Crit. Care Med., 2019, vol. 199, no. 1, pp. 22–31. DOI: 10.1164/rccm.201801-0088CI
  14. Yang X., Du B. Does Pulse Pressure Variation Predict Fluid Responsiveness in Critically Ill Patients? A Systematic Review and Meta-Analysis. Crit. Care, 2014, vol. 18, no. 6. Art. no. 650. DOI: 10.1186/s13054-014-0650-6
  15. Pinsky M.R. Heart Lung Interactions During Mechanical Ventilation. Curr. Opin. Crit. Care, 2012, vol. 18, no. 3, pp. 256–260. DOI: 10.1097/MCC.0b013e3283532b73
  16. Zhang Z., Lu B., Sheng X., Jin N. Accuracy of Stroke Volume Variation in Predicting Fluid Responsiveness: A Systematic Review and Meta-Analysis. J. Anesth., 2011, vol. 25, no. 6, pp. 904–916. DOI: 10.1007/s00540-011-1217-1
  17. Marik P.E., Cavallazzi R., Vasu T., Hirani A. Dynamic Changes in Arterial Waveform Derived Variables and Fluid Responsiveness in Mechanically Ventilated Patients: A Systematic Review of the Literature. Crit. Care Med., 2009, vol. 37, no. 9, pp. 2642–2647. DOI: 10.1097/ccm.0b013e3181a590da
  18. Monge García M.I., Saludes Orduña P., Cecconi M. Understanding Arterial Load. Intensive Care Med., 2016, vol. 42, no. 10, pp. 1625–1627. DOI: 10.1007/s00134-016-4212-z
  19. Zhou X., Pan W., Chen B., Xu Z., Pan J. Predictive Performance of Dynamic Arterial Elastance for Arterial Pressure Response to Fluid Expansion in Mechanically Ventilated Hypotensive Adults: A Systematic Review and Meta-Analysis of Observational Studies. Ann. Intensive Care, 2021, vol. 11, no. 1. Art. no. 119. DOI: 10.1186/s13613-021-00909-2
  20. Cannesson M., Besnard C., Durand P.G., Bohé J., Jacques D. Relation Between Respiratory Variations in Pulse Oximetry Plethysmographic Waveform Amplitude and Arterial Pulse Pressure in Ventilated Patients. Crit. Care, 2005, vol. 9, no. 5, pp. R562–R568. DOI: 10.1186/cc3799
  21. Chu H., Wang Y., Sun Y., Wang G. Accuracy of Pleth Variability Index to Predict Fluid Responsiveness in Mechanically Ventilated Patients: A Systematic Review and Meta-Analysis. J. Clin. Monit. Comput., 2016, vol. 30, no. 3, pp. 265–274. DOI: 10.1007/s10877-015-9742-3
  22. Liu T., Xu C., Wang M., Niu Z., Qi D. Reliability of Pleth Variability Index in Predicting Preload Responsiveness of Mechanically Ventilated Patients Under Various Conditions: A Systematic Review and Meta-Analysis. BMC Anesthesiol., 2019, vol. 19, no. 1. Art. no. 67. DOI: 10.1186/s12871-019-0744-4
  23. Ganter M.T., Geisen M., Hartnack S., Dzemali O., Hofer C.K. Prediction of Fluid Responsiveness in Mechanically Ventilated Cardiac Surgical Patients: The Performance of Seven Different Functional Hemodynamic Parameters. BMC Anesthesiol., 2018, vol. 18, no. 1. Art. no. 55. DOI: 10.1186/s12871-018-0520-x
  24. Si X., Song X., Lin Q., Nie Y., Zhang G., Xu H., Chen M., Wu J., Guan X. Does End-Expiratory Occlusion Test Predict Fluid Responsiveness in Mechanically Ventilated Patients? A Systematic Review and Meta-Analysis. Shock, 2020, vol. 54, no. 6, pp. 751–760. DOI: 10.1097/SHK.0000000000001545
  25. Vieillard-Baron A., Chergui K., Rabiller A., Peyrouset O., Page B., Beauchet A., Jardin F. Superior Vena Caval Collapsibility as a Gauge of Volume Status in Ventilated Septic Patients. Intensive Care Med., 2004, vol. 30, no. 9, pp. 1734–1739. DOI: 10.1007/s00134-004-2361-y
  26. Upadhyay V., Malviya D., Nath S.S., Tripathi M., Jha A. Comparison of Superior Vena Cava and Inferior Vena Cava Diameter Changes by Echocardiography in Predicting Fluid Responsiveness in Mechanically Ventilated Patients. Anesth. Essays Res., 2020, vol. 14, no. 3, pp. 441–447. DOI: 10.4103/aer.AER_1_21
  27. Cecconi M., Parsons A.K., Rhodes A. What Is a Fluid Challenge? Curr. Opin. Crit. Care, 2011, vol. 17, no. 3, pp. 290–295. DOI: 10.1097/MCC.0b013e32834699cd
  28. Messina A., Pelaia C., Bruni A., Garofalo E., Bonicolini E., Longhini F., Dellara E., Saderi L., Romagnoli S., Sotgiu G., Cecconi M., Navalesi P. Fluid Challenge During Anesthesia: A Systematic Review and Meta-Analysis. Anesth. Analg., 2018, vol. 127, no. 6, pp. 1353–1364. DOI: 10.1213/ANE.0000000000003834
  29. Messina A., Longhini F., Coppo C., Pagni A., Lungu R., Ronco C., Cattaneo M.A., Dore S., Sotgiu G., Navalesi P. Use of the Fluid Challenge in Critically Ill Adult Patients: A Systematic Review. Anesth. Analg., 2017, vol. 125, no. 5, pp. 1532–1543. DOI: 10.1213/ANE.0000000000002103
  30. Cecconi M., Hofer C., Teboul J.L., Pettila V., Wilkman E., Molnar Z., Della Rocca G., Aldecoa C., Artigas A., Jog S., Sander M., Spies C., Lefrant J.Y., De Backer D. Fluid Challenges in Intensive Care: The FENICE Study. Intensive Care Med., 2015, vol. 41, no. 9, pp. 1529–1537. DOI: 10.1007/s00134-015-3850-x
  31. Martin G.S., Bassett P. Crystalloids vs. Colloids for Fluid Resuscitation in the Intensive Care Unit: A Systematic Review and Meta-Analysis. J. Crit. Care, 2019, vol. 50, pp. 144–154. DOI: 10.1016/j.jcrc.2018.11.031
  32. Toscani L., Aya H.D., Antonakaki D., Bastoni D., Watson X., Arulkumaran N., Rhodes A., Cecconi M. What Is the Impact of the Fluid Challenge Technique on Diagnosis of Fluid Responsiveness? A Systematic Review and Meta-Analysis. Crit. Care, 2017, vol. 21, no. 1. Art. no. 207. DOI: 10.1186/s13054-017-1796-9
  33. Messmer A.S., Zingg C., Müller M., Gerber J.L., Schefold J.C., Pfortmueller C.A. Fluid Overload and Mortality in Adult Critical Care Patients – A Systematic Review and Meta-Analysis of Observational Studies. Crit. Care Med., 2020, vol. 48, no. 12, pp. 1862–1870. DOI: 10.1097/CCM.0000000000004617
  34. Koc V., Delmas Benito L., de With E., Boerma E.C. The Effect of Fluid Overload on Attributable Morbidity After Cardiac Surgery: A Retrospective Study. Crit. Care Res. Pract., 2020, vol. 2020. Art. no. 4836862. DOI: 10.1155/2020/4836862
  35. Messina A., Dell’Anna A., Baggiani M., Torrini F., Maresca G.M., Bennett V., Saderi L., Sotgiu G., Antonelli M., Cecconi M. Functional Hemodynamic Tests: A Systematic Review and a Metanalysis on the Reliability of the End-Expiratory Occlusion Test and of the Mini-Fluid Challenge in Predicting Fluid Responsiveness. Crit. Care, 2019, vol. 23, no. 1. Art. no. 264. DOI: 10.1186/s13054-019-2545-z
  36. Jozwiak M., Monnet X., Teboul J.-L. Prediction of Fluid Responsiveness in Ventilated Patients. Ann. Transl. Med., 2018, vol. 6, no. 18. Art. no. 352. DOI: 10.21037/atm.2018.05.03
  37. Boulain T., Achard J.-M., Teboul J.-L., Richard C., Perrotin D., Ginies G. Changes in BP Induced by Passive Leg Raising Predict Response to Fluid Loading in Critically Ill Patients. Chest, 2002, vol. 121, no. 4, pp. 1245–1252. DOI: 10.1378/chest.121.4.1245
  38. Thiel S.W., Kollef M.H., Isakow W. Non-Invasive Stroke Volume Measurement and Passive Leg Raising Predict Volume Responsiveness in Medical ICU Patients: An Observational Cohort Study. Crit. Care, 2009, vol. 13, no. 4. Art. no. R111. DOI: 10.1186/cc7955
  39. Evans L., Rhodes A., Alhazzani W., Antonelli M., Coopersmith C.M., French C., Machado F.R., Mcintyre L., Ostermann M., Prescott H.C. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med., 2021, vol. 47, no. 11, pp. 1181–1247. DOI: 10.1007/s00134-021-06506-y
  40. Huang H., Wu C., Shen Q., Fang Y., Xu H. Value of Variation of End-Tidal Carbon Dioxide for Predicting Fluid Responsiveness During the Passive Leg Raising Test in Patients with Mechanical Ventilation: A Systematic Review and Meta-Analysis. Crit. Care, 2022, vol. 26, no. 1. Art. no. 20. DOI: 10.1186/s13054-022-03890-9
  41. Gavelli F., Teboul J.-L., Monnet X. The End-Expiratory Occlusion Test: Please, Let Me Hold Your Breath! Crit. Care, 2019, vol. 23, no. 1. Art. no. 274. DOI: 10.1186/s13054-019-2554-y
  42. Wilkman E., Kuitunen A., Pettilä V., Varpula M. Fluid Responsiveness Predicted by Elevation of PEEP in Patients with Septic Shock. Acta Anaesthesiol. Scand., 2014, vol. 58, no. 1, pp. 27–35. DOI: 10.1111/aas.12229
  43. Tusman G., Groisman I., Maidana G.A., Scandurra A., Arca J.M., Bohm S.H., Suarez-Sipmann F. The Sensitivity and Specificity of Pulmonary Carbon Dioxide Elimination for Noninvasive Assessment of Fluid Responsiveness. Anesth. Analg., 2016, vol. 122, no. 5, pp. 1404–1411. DOI: 10.1213/ANE.0000000000001047
  44. Messina A., Robba C., Calabrò L., Zambelli D., Iannuzzi F., Molinari E., Scarano S., Battaglini D., Baggiani M., De Mattei G., Saderi L., Sotgiu G., Pelosi P., Cecconi M. Association Between Perioperative Fluid Administration and Postoperative Outcomes: A 20-Year Systematic Review and a Meta-Analysis of Randomized Goal-Directed Trials in Major Visceral/Noncardiac Surgery. Crit. Care, 2021, vol. 25, no. 1. Art. no. 43. DOI: 10.1186/s13054-021-03464-1
  45. Piccioni F., Bernasconi F., Tramontano G.T.A., Langer M. A Systematic Review of Pulse Pressure Variation and Stroke Volume Variation to Predict Fluid Responsiveness During Cardiac and Thoracic Surgery. J. Clin. Monit. Comput., 2017, vol. 31, no. 4, pp. 677–684. DOI: 10.1007/s10877-016-9898-5
  46. Biais M., Ehrmann S., Mari A., Conte B., Mahjoub Y., Desebbe O., Pottecher J., Lakhal K., Benzekri-Lefevre D., Molinari N., Boulain T., Lefrant J.Y., Muller L. Clinical Relevance of Pulse Pressure Variations for Predicting Fluid Responsiveness in Mechanically Ventilated Intensive Care Unit Patients: The Grey Zone Approach. Crit. Care, 2014, vol. 18, no. 6. Art. no. 587. DOI: 10.1186/s13054-014-0587-9
  47. De Waal E.E.C., Rex S., Kruitwagen C.L.J.J., Kalkman C.J., Buhre W.F. Dynamic Preload Indicators Fail to Predict Fluid Responsiveness in Open-Chest Conditions. Crit. Care Med., 2009, vol. 37, no. 2, pp. 510–515. DOI: 10.1097/CCM.0b013e3181958bf7
  48. Monnet X., Dres M., Ferré A., Le Teuff G., Jozwiak M., Bleibtreu A., Le Deley M.-C., Chemla D., Richard C., Teboul J.-L. Prediction of Fluid Responsiveness by a Continuous Non-Invasive Assessment of Arterial Pressure in Critically Ill Patients: Comparison with Four Other Dynamic Indices. Br. J. Anaesth., 2012, vol. 109, no. 3, pp. 330–338. DOI: 10.1093/bja/aes182
  49. Min J.J., Gil N.-S., Lee J.-H., Ryu D.K., Kim C.S., Lee S.M. Predictor of Fluid Responsiveness in the ‘Grey Zone’: Augmented Pulse Pressure Variation Through a Temporary Increase in Tidal Volume. Br. J. Anaesth., 2017, vol. 119, no. 1, pp. 50–56. DOI: 10.1093/bja/aex074
  50. Wyffels P.A.H., De Hert S., Wouters P.F. New Algorithm to Quantify Cardiopulmonary Interaction in Patients with Atrial Fibrillation: A Proof-of-Concept Study. Br. J. Anaesth., 2021, vol. 126, no. 1, pp. 111–119. DOI: 10.1016/j. bja.2020.09.039
  51. Kim N., Shim J.-K., Choi H.G., Kim M.K., Kim J.Y., Kwak Y.-L. Comparison of Positive End-Expiratory Pressure-Induced Increase in Central Venous Pressure and Passive Leg Raising to Predict Fluid Responsiveness in Patients with Atrial Fibrillation. Br. J. Anaesth., 2016, vol. 116, no. 3, pp. 350–356. DOI: 10.1093/bja/aev359
  52. Bortolotti P., Colling D., Colas V., Voisin B., Dewavrin F., Poissy J., Girardie P., Kyheng M., Saulnier F., Favory R., Preau S. Respiratory Changes of the Inferior Vena Cava Diameter Predict Fluid Responsiveness in Spontaneously Breathing Patients with Cardiac Arrhythmias. Ann. Intensive Care, 2018, vol. 8, no. 1. Art. no. 79. DOI: 10.1186/s13613-018-0427-1
  53. Ranucci M., Pazzaglia A., Tritapepe L., Guarracino F., Lupo M., Salandin V., Del Sarto P., Condemi A., Campodonico R., Laudani G., Pittarello D., Belloni L. Fluid Responsiveness and Right Ventricular Function in Cardiac Surgical Patients. A Multicenter Study. HSR Proc. Intensive Care Cardiovasc. Anesth., 2009, vol. 1, no. 1, pp. 21–29.
  54. Graessler M.F., Wodack K.H., Pinnschmidt H.O., Nishimoto S., Behem C.R., Reuter D.A., Trepte C.J.C. Assessing Volume Responsiveness Using Right Ventricular Dynamic Indicators of Preload. J. Anesth., 2021, vol. 35, no. 4, pp. 488–494. DOI: 10.1007/s00540-021-02937-5



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North