CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Effect of Sodium Cromoglycate and Intramural Ganglia on TNFR1 Gene Expression in the Bronchi of Rats with Ovalbumin-Induced Bronchial Asthma. C. 32-39

Версия для печати

Section: Biological sciences

UDC

591.423+616.233

DOI

10.37482/2687-1491-Z176

Authors

Valentina M. Kirilina* ORCID: https://orcid.org/0000-0003-4679-7767
Olga E. Smirnova* ORCID: https://orcid.org/0000-0002-0045-3814
Lubov E. Blazhevich* ORCID: https://orcid.org/0000-0001-8306-738X
Petr M. Maslyukov** ORCID: https://orcid.org/0000-0002-6230-5024

*Petrozavodsk State University
(Petrozavodsk, Russian Federation)
**Yaroslavl State Medical University
(Yaroslavl, Russian Federation)

Corresponding author: Olga Smirnova, address: prosp. Lenina 33, Petrozavodsk, 185910, Russian Federation; e-mail: smmirnova.olga@yandex.ru

Abstract

The purpose of this article was to study TNFR1 gene expression in the bronchi of rats with ovalbumininduced bronchial asthma, taking into account intramural metasympathetic ganglia and the stabilization of mast cell membranes with sodium cromoglycate. In this paper, gene expression refers to the accumulation of mRNA in bronchial tissues. Expression of the TNFR1 gene and receptor plays an important role in the development of allergic asthma. For this reason, the TNFR1 gene was chosen for the analysis. Materials and methods. Bronchial samples from Wistar rats were studied using real-time polymerase chain reaction. For experiments, bronchi with ganglia (in the bifurcation area) and bronchi without ganglia (straight sections) were taken. The material was collected from 7 groups of rats: with ovalbumin-induced bronchial asthma (6 groups) and control animals (1 group). Mast cell stabilizer sodium cromoglycate was used to treat 3 groups of rats with simulated asthma. Results. It was found that the expression of mRNA encoding TNFR1 increases in rats developing bronchial asthma. In bronchial samples with ganglia, TNFR1 gene expression was higher than in bronchial preparations without ganglia. Under the influence of sodium cromoglycate, TNFR1 gene expression decreased. Based on the results obtained, it was suggested that mast cells and neurons of the intramural ganglion have a rather pronounced effect on TNFR1 gene expression.

Keywords

TNFR1, mast cells, intramural ganglion, sodium cromoglycate, ovalbumin-induced asthma, tumour necrosis factor-α
Download (pdf, 0.5MB )

References

  1. Ahmad S., Azid N.A., Boer J.C., Lim J., Chen X., Plebanski M., Mohamud R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front. Immunol., 2018, vol. 9. Art. no. 2572. https://doi.org/10.3389/fimmu.2018.02572
  2. Bystrom J., Clanchy F.I., Taher T.E., Mangat P., Jawad A.S., Williams R.O., Mageed R.A. TNF-α in the Regulation of Treg and Th17 Cells in Rheumatoid Arthritis and Other Autoimmune Inflammatory Diseases. Cytokine, 2018, vol. 101, pp. 4–13. https://doi.org/10.1016/j.cyto.2016.09.001
  3. Probert L. TNF and Its Receptors in the CNS: The Essential, the Desirable and the Deleterious Effects. Neuroscience, 2015, vol. 302, pp. 2–22. https://doi.org/10.1016/j.neuroscience.2015.06.038
  4. Pasparakis M., Vandenabeele P. Necroptosis and Its Role in Inflammation. Nature, 2015, vol. 517, pp. 311–320. https://doi.org/10.1038/nature14191
  5. Kleinbongard P., Schulz R., Heusch G. TNF-α in Myocardial Ischemia/Reperfusion, Remodeling and Heart Failure. Heart Fail. Rev., 2011, vol. 16, no. 1, pp. 49–69. https://doi.org/10.1007/s10741-010-9180-8
  6. Niessen N.M., Gibson P.G., Simpson J.L., Scott H.A., Baines K.J., Fricker M. Airway Monocyte Modulation Relates to Tumour Necrosis Factor Dysregulation in Neutrophilic Asthma. ERJ Open Res., 2021, vol. 7, no. 3, pp. 00131–02021. https://doi.org/10.1183/23120541.00131-2021
  7. Alshevskaya A., Zhukova J., Kireev F., Lopatnikova J., Evsegneeva I., Demina D., Nepomniashchikch V., Gladkikh V., Karaulov A., Sennikov S. Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells, 2022, vol. 11, no. 11. Art. no. 1736. https://doi.org/10.3390/cells11111736
  8. Berry M.A., Hargadon B., Shelley M., Parker D., Shaw D.E., Green R.H., Bradding P., Brightling C.E., Wardlaw A.J., Pavord I.D. Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma. N. Engl. J. Med., 2006, vol. 354, no. 7, pp. 697–708. https://doi.org/10.1056/nejmoa050580
  9. Whitehead G.S., Thomas S.Y., Shalaby K.H., Nakano K., Moran T.P., Ward J.M., Flake G.P., Nakano H., Cook D.N. TNF Is Required for TLR Ligand-Mediated but Not Protease-Mediated Allergic Airway Inflammation. J. Clin. Invest., 2017, vol. 127, no. 9, pp. 3313–3326. https://doi.org/10.1172/jci90890
  10. Proudfoot A., Bayliffe A., O’Kane C.M., Wright T., Serone A., Bareille P.J., Brown V., Hamid U.I., Chen Y., Wilson R., Cordy J., Morley P., de Wildt R., Elborn S., Hind M., Chilvers E.R., Griffiths M., Summers C., McAuley D.F. Novel Anti-Tumour Necrosis Factor Receptor-1 (TNFR1) Domain Antibody Prevents Pulmonary Inflammation in Experimental Acute Lung Injury. Thorax, 2018, vol. 73, no. 8, pp. 723–730. https://doi.org/10.1136/thoraxjnl-2017-210305
  11. Kucher A.N. Neurogenic Inflammation: Biochemical Markers, Genetic Control and Diseases. Bull. Sib. Med., 2020, vol. 19, no. 2, pp. 171–181. https://doi.org/10.20538/1682-0363-2020-2-171-181
  12. Chiang C.H. Distribution of Ganglion Neurons in the Trachea of the Rat. Kaibogaku Zasshi, 1993, vol. 68, no. 6, pp. 607–616.
  13. Close B., Banister K., Baumans V., Bernoth E.M., Bromage N., Bunyan J., Erhardt W., Flecknell P., Gregory N., Hackbarth H., Morton D., Warwick C. Recommendations for Euthanasia of Experimental Animals: Part 2. Lab. Anim., 1997, vol. 31, no. 1, pp. 1–32. https://doi.org/10.1258/002367797780600297
  14. Yamaguchi M., Shibata O., Nishioka K., Makita T., Sumikawa K. Propofol Attenuates Ovalbumin-Induced Smooth Muscle Contraction of the Sensitized Rat Trachea: Inhibition of Serotonergic and Cholinergic Signaling. Anesth. Analg., 2006, vol. 103, no. 3, pp. 594–600. https://doi.org/10.1213/01.ane.0000229853.01875.60
  15. Yilmaz A., Onen H., Alp E., Menevse S. Real-Time PCR for Gene Expression Analysis. Hernandez-Rodriguez P., Ramirez Gomez A.P. (eds.). Polymerase Chain Reaction. Intech, 2012, pp. 229–254.
  16. Masuda N., Mantani Y., Yoshitomi C., Yuasa H., Nishida M., Aral M., Kawano J., Yokoyama T., Hoshi N., Kitagawa H. Immunohistochemical Study on the Secretory Host Defense System with Lysozyme and Secretory Phospholipase A2 Throughout Rat Respiratory Tract. J. Vet. Med. Sci., 2018, vol. 80, no. 2, pp. 323–332. https://doi.org/10.1292/jvms.17-0503
  17. Papazian I., Tsoukala E., Boutou A., Karamita M., Kambas K., Iliopoulou L., Fischer R., Kontermann R.E., Denis M.C., Kollias G., Lassmann H., Probert L. Fundamentally Different Roles of Neuronal TNF Receptors in CNS Pathology: TNFR1 and IKKβ Promote Microglial Responses and Tissue Injury in Demyelination While TNFR2 Protects Against Excitotoxicity in Mice. J. Neuroinflammation, 2021, vol. 18, no. 1. Art. no. 222. https://doi.org/10.1186/s12974-021-02200-4
  18. Kumar S., Joos G., Boon L., Tournoy K., Provoost S., Maes T. Role of Tumor Necrosis Factor-α and Its Receptors in Diesel Exhaust Particle-Induced Pulmonary Inflammation. Sci. Rep., 2017, vol. 7, no. 1. Art. no. 11508. https://doi.org/10.1038/s41598-017-11991-7



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North