CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Cognitive Control Processes in the Stroop Task and Their Reflection in Event-Related Potentials (Review). C. 114-128

Версия для печати

Section: Review articles

UDC

612.821+612.825.1

DOI

10.37482/2687-1491-Z184

Authors

Valentina A. Grigorik* ORCID: https://orcid.org/0009-0002-9916-2319
Marina V. Pronina** ORCID: https://orcid.org/0000-0002-8039-1755
Maria G. Starchenko*** ORCID: https://orcid.org/0009-0001-2743-3856

*Northern (Arctic) Federal University named after M.V. Lomonosov
(Arkhangelsk, Russian Federation)
**N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences
(St. Petersburg, Russian Federation)
***Saint Petersburg Electrotechnical University
(St. Petersburg, Russian Federation)

Corresponding author: Valentina Grigorik, address: nab. Severnoy Dviny 17, Arkhangelsk, 163000, Russian Federation; e-mail: grigoric.valentina@yandex.ru

Abstract

The review summarizes the data of Russian and foreign studies on the psychophysiological parameters of the Stroop task execution. In addition, the article considers the main modifications of the task and similar paradigms as well as the key hypotheses explaining the causes of the interference effect and the increase in reaction time to stimuli containing conflicting information. Further, the paper presents data on eventrelated potential (ERP) waves, which are supposed to reflect cognitive control processes, such as conflict detection, overcoming of interference and conflict resolution. The frontocentral N2 wave characterizes the processes of conflict detection and overcoming of interference, and its main neural generator is the anterior cingulate cortex. The N450 wave is primarily generated in the anterior cingulate cortex and prefrontal cortex and is thought to reflect interference suppression. The centroparietal P300 wave and the late positive complex, which appears to be generated in the middle or inferior frontal gyrus and in the extrastriate cortex, are associated with the conflict resolution process. The readiness potential is, supposedly, generated in the motor cortex and reflects the process of selecting and preparing a motor response. Moreover, the review presents the main directions of studies that use the Stroop test paradigm and its modifications. Despite a significant number of existing psychophysical and neurophysiological papers, the question of the brain mechanisms of cognitive control in tasks that cause cognitive conflict remains open, and the neuropsychological role of the ERP waves recorded in such tasks is still not fully explored. Studies into the influence of different types of competing information and the degree of conflict on the psychophysiological indicators in the Stroop task are of considerable interest.

Keywords

Stroop task, cognitive control, event-related potentials, N2 wave, N450 wave, late positive complex, readiness potential, P300 wave
Download (pdf, 0.5MB )

References

  1. Kahneman D. Attention and Effort. Englewood Cliffs, 1973. 246 p.
  2. Shen C., Jiang Q., Luo Y., Long J., Tai X., Liu S. Stroop Interference in Children with Developmental Dyslexia: An Event-Related Potentials Study. Medicine (Baltimore), 2021, vol. 100, no. 25. Art. no. e26464. https://doi.org/10.1097/MD.0000000000026464
  3. Li Z., Yang G., Wu H., Li Q., Xu H., Göschl F., Nolte G., Liu X. Modality-Specific Neural Mechanisms of Cognitive Control in a Stroop-Like Task. Brain Cogn., 2021, vol. 147. Art. no. 105662. https://doi.org/10.1016/j.bandc.2020.105662
  4. Huang B., Chen C. Stroop N450 Reflects Both Stimulus Conflict and Response Conflict. Neuroreport, 2020, vol. 31, no. 12, pp. 851–856. https://doi.org/10.1097/WNR.0000000000001454
  5. Šaban I., Schmidt J.R. Stimulus and Response Conflict from a Second Language: Stroop Interference in Weakly-Bilingual and Recently-Trained Languages. Acta Psychol. (Amst.), 2021, vol. 218. Art. no. 103360. https://doi.org/10.1016/j.actpsy.2021.103360
  6. Killian G. The Stroop Color-Word Interference Test. Keyser D., Sweetland R. (eds.). Test Critiques. Vol. 2. Kansas City, 1985, pp. 751–758.
  7. Ramos-Goicoa M., Galdo-Álvarez S., Díaz F., Zurrón M. Effect of Normal Aging and of Mild Cognitive Impairment on Event-Related Potentials to a Stroop Color-Word Task. J. Alzheimers Dis., 2016, vol. 52, no. 4, pp. 1487–1501. https://doi.org/10.3233/JAD-151031
  8. Starodubcev A.S., Allakhverdov M.V. Influence of Expectation of Conflict Stimuli on Stroop Effect. Vestnik Sankt-Peterburgskogo universiteta. Psikhologiya i pedagogika, 2017, vol. 7, no. 2, pp. 137–153 (in Russ.). https://doi.org/10.21638/11701/spbu16.2017.203
  9. Allakhverdov M.V., Starodubtsev A.S. Vliyanie polozheniya distraktora na effekt Strupa [Influence of Distracter’s Location on Stroop Interference]. Peterburgskiy psikhologicheskiy zhurnal, 2016, no. 17, pp. 125–150.
  10. Lupker S.J., Katz A.N. Input, Decision, and Response Factors in Picture–Word Interference. J. Exp. Psychol. Hum. Learn. Mem., 1981, vol. 7, no. 4, pp. 269–282. https://doi.org/10.1037/0278-7393.7.4.269
  11. Steinhauser M., Hübner R. Distinguishing Response Conflict and Task Conflict in the Stroop Task: Evidence from Ex-Gaussian Distribution Analysis. J. Exp. Psychol. Hum. Percept. Perform., 2009, vol. 35, no. 5, pp. 1398–1412. https://doi.org/10.1037/a0016467
  12. Allakhverdov V.M., Allakhverdov M.V. Fenomen Strupa: interferentsiya kak logicheskiy paradoks [Stroop Effect: Interference as a Logic Paradox]. Vestnik Sankt-Peterburgskogo universiteta. Ser. 16: Psikhologiya. Pedagogika, 2014, no. 4, pp. 90–102.
  13. Roelofs A. A Unified Computational Account of Cumulative Semantic, Semantic Blocking, and Semantic Distractor Effects in Picture Naming. Cognition, 2018, vol. 172, pp. 59–72. https://doi.org/10.1016/j.cognition.2017.12.007
  14. Blais C., Besner D. A Reverse Stroop Effect Without Translation or Reading Difficulty. Psychon. Bull. Rev., 2007, vol. 14, no. 3, pp. 466–469. https://doi.org/10.3758/bf03194090
  15. Logan G.D., Zbrodoff N.J., Williamson J. Strategies in the Color–Word Stroop Task. Bull. Psychon. Soc., 1984, vol. 22, pp. 135–138. https://doi.org/10.3758/BF03333784
  16. Simon J.R., Ruddell A.P. Auditory S-R Compatibility: The Effect of an Irrelevant Cue on Information Processing. J. Appl. Psychol., 1967, vol. 51, no. 3, pp. 300–304. https://doi.org/10.1037/h0020586
  17. Eriksen B.A., Eriksen C.W. Effects of Noise Letters upon the Identification of a Target Letter in a Nonsearch Task. Percept. Psychophys., 1974, vol. 16, pp. 143–149. https://doi.org/10.3758/BF03203267
  18. Long B., Konkle T. A Familiar-Size Stroop Effect in the Absence of Basic-Level Recognition. Cognition, 2017, vol. 168, pp. 234–242. https://doi.org/10.1016/j.cognition.2017.06.025
  19. Gajewski P.D., Falkenstein M., Thönes S., Wascher E. Stroop Task Performance Across the Lifespan: High Cognitive Reserve in Older Age Is Associated with Enhanced Proactive and Reactive Interference Control. Neuroimage, 2020, vol. 207. Art. no. 116430. https://doi.org/10.1016/j.neuroimage.2019.116430
  20. De Houwer J. On the Role of Stimulus-Response and Stimulus-Stimulus Compatibility in the Stroop Effect. Mem. Cognit., 2003, vol. 31, no. 3, pp. 353–359. https://doi.org/10.3758/BF03194393
  21. Killikelly C., Szűcs D. Asymmetry in Stimulus and Response Conflict Processing Across the Adult Lifespan: ERP and EMG Evidence. Cortex, 2013, vol. 49, no. 10, pp. 2888–2903. https://doi.org/10.1016/j.cortex.2013.08.017
  22. Wang W., Qi M., Gao H. An ERP Investigation of the Working Memory Stroop Effect. Neuropsychologia, 2021, vol. 152. Art. no. 107752. https://doi.org/10.1016/j.neuropsychologia.2021.107752
  23. Straub E.R., Schmidts C., Kunde W., Zhang J., Kiesel A., Dignath D. Limitations of Cognitive Control on Emotional Distraction – Congruency in the Color Stroop Task Does Not Modulate the Emotional Stroop Effect. Cogn. Affect. Behav. Neurosci., 2022, vol. 22, no. 1, pp. 21–41. https://doi.org/10.3758/s13415-021-00935-4
  24. Ikeda S. Influence of Color on Emotion Recognition Is Not Bidirectional: An Investigation of the Association Between Color and Emotion Using a Stroop-Like Task. Psychol. Rep., 2020, vol. 123, no. 4, pp. 1226–1239. https://doi.org/10.1177/0033294119850480
  25. Smolker H.R., Wang K., Luciana M., Bjork J.M., Gonzalez R., Barch D.M., McGlade E.C., Kaiser R.H., Friedman N.P., Hewitt J.K., Banich M.T. The Emotional Word-Emotional Face Stroop Task in the ABCD Study: Psychometric Validation and Associations with Measures of Cognition and Psychopathology. Dev. Cogn. Neurosci., 2022, vol. 53. Art. no. 101054. https://doi.org/10.1016/j.dcn.2021.101054
  26. Sharma V.V., Thaut M., Russo F., Alain C. Absolute Pitch and Musical Expertise Modulate Neuro-Electric and Behavioral Responses in an Auditory Stroop Paradigm. Front. Neurosci., 2019, vol. 13. Art. no. 932. https://doi.org/10.3389/fnins.2019.00932
  27. Tarai S., Srinivasan N. Emotional Prosody Stroop Effect in Hindi: An Event Related Potential Study. Prog. Brain Res., 2019, vol. 247, pp. 193–217. https://doi.org/10.1016/bs.pbr.2019.04.003
  28. Heidlmayr K., Kihlstedt M., Isel F. A Review on the Electroencephalography Markers of Stroop Executive Control Processes. Brain Cogn., 2020, vol. 146. Art. no. 105637. https://doi.org/10.1016/j.bandc.2020.105637
  29. Botvinick M.M., Braver T.S., Barch D.M., Carter C.S., Cohen J.D. Conflict Monitoring and Cognitive Control. Psychol. Rev., 2001, vol. 108, no. 3, pp. 624–652. https://doi.org/10.1037/0033-295x.108.3.624
  30. Carter C.S., van Veen V. Anterior Cingulate Cortex and Conflict Detection: An Update of Theory and Data. Cogn. Affect. Behav. Neurosci., 2007, vol. 7, no. 4, pp. 367–379. https://doi.org/10.3758/cabn.7.4.367
  31. Song S., Zilverstand A., Song H., d’Oleire Uquillas F., Wang Y., Xie C., Cheng L., Zou Z. The Influence of Emotional Interference on Cognitive Control: A Meta-Analysis of Neuroimaging Studies Using the Emotional Stroop Task. Sci. Rep., 2017, vol. 7, no. 1. Art. no. 2088. https://doi.org/10.1038/s41598-017-02266-2
  32. West R. Neural Correlates of Cognitive Control and Conflict Detection in the Stroop and Digit-Location Tasks. Neuropsychologia, 2003, vol. 41, no. 8, pp. 1122–1135. https://doi.org/10.1016/s0028-3932(02)00297-x
  33. Coderre E., Conklin K., van Heuven W.J.B. Electrophysiological Measures of Conflict Detection and Resolution in the Stroop Task. Brain Res., 2011, vol. 21, no. 1413, pp. 51–59. https://doi.org/10.1016/j.brainres.2011.07.017
  34. Kropotov J.D., Pronina M.V., Ponomarev V.A., Poliakov Y.I., Plotnikova I.V., Mueller A. Latent ERP Components of Cognitive Dysfunctions in ADHD and Schizophrenia. Clin. Neurophysiol., 2019, vol. 130, no. 4, pp. 445–453. https://doi.org/10.1016/j.clinph.2019.01.015
  35. Gawlowska M., Domagalik A., Beldzik E., Marek T., Mojsa-Kaja J. Dynamics of Error-Related Activity in Deterministic Learning – an EEG and fMRI Study. Sci. Rep., 2018, vol. 8, no. 1. Art. no. 14617. https://doi.org/10.1038/s41598-018-32995-x
  36. Larson M.J., Clayson P.E., Clawson A. Making Sense of All the Conflict: A Theoretical Review and Critique of Conflict-Related ERPs. Int. J. Psychophysiol., 2014, vol. 93, no. 3, pp. 283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007
  37. Friedman N.P., Miyake A. The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis. J. Exp. Psychol. Gen., 2004, vol. 133, no. 1, pp. 101–135. https://doi.org/10.1037/0096-3445.133.1.101
  38. Chen Z., Lei X., Ding C., Li H., Chen A. The Neural Mechanisms of Semantic and Response Conflicts: An fMRI Study of Practice-Related Effects in the Stroop Task. Neuroimage, 2013, vol. 66, pp. 577–584. https://doi.org/10.1016/j.neuroimage.2012.10.028
  39. Markela-Lerenc J., Ille N., Kaiser S., Fiedler P., Mundt C., Weisbrod M. Prefrontal-Cingulate Activation During Executive Control: Which Comes First? Brain Res. Cogn. Brain Res., 2004, vol. 18, no. 3, pp. 278–287. https://doi.org/10.1016/j.cogbrainres.2003.10.013
  40. Bruchmann M., Herper K., Konrad C., Pantev C., Huster R.J. Individualized EEG Source Reconstruction of Stroop Interference with Masked Color Words. Neuroimage, 2010, vol. 49, no. 2, pp. 1800–1809. https://doi.org/10.1016/j.neuroimage.2009.09.032
  41. Polich J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol., 2007, vol. 118, no. 10, pp. 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
  42. Verleger R. Effects of Relevance and Response Frequency on P3b Amplitudes: Review of Findings and Comparison of Hypotheses About the Process Reflected by P3b. Psychophysiology, 2020, vol. 57, no. 7. Art. no. e13542. https://doi.org/10.1111/psyp.13542
  43. Overbye K., Walhovd K.B., Fjell A.M., Tamnes C.K., Huster R.J. Electrophysiological and Behavioral Indices of Cognitive Conflict Processing Across Adolescence. Dev. Cogn. Neurosci., 2021, vol. 48. Art. no. 100929. https://doi.org/10.1016/j.dcn.2021.100929
  44. Heidlmayr K., Hemforth B., Moutier S., Isel F. Neurodynamics of Executive Control Processes in Bilinguals: Evidence from ERP and Source Reconstruction Analyses. Front. Psychol., 2015, vol. 6. Art. no. 821. https://doi.org/10.3389/fpsyg.2015.00821
  45. Larson M.J., Clayson P.E., Kirwan C.B., Weissman D.H. Event-Related Potential Indices of Congruency Sequence Effects Without Feature Integration or Contingency Learning Confounds. Psychophysiology, 2016, vol. 53, no. 6, pp. 814–822. https://doi.org/10.1111/psyp.12625
  46. Coles M.G., Gratton G., Donchin E. Detecting Early Communication: Using Measures of Movement-Related Potentials to Illuminate Human Information Processing. Biol. Psychol., 1988, vol. 26, no. 1-3, pp. 69–89. https://doi.org/10.1016/0301-0511(88)90014-2
  47. Donohue S.E., Appelbaum L.G., McKay C.C., Woldorff M.G. The Neural Dynamics of Stimulus and Response Conflict Processing as a Function of Response Complexity and Task Demands. Neuropsychologia, 2016, vol. 84, pp. 14–28. https://doi.org/10.1016/j.neuropsychologia.2016.01.035
  48. Sakata H., Itoh K., Suzuki Y., Nakamura K., Watanabe M., Igarashi H., Nakada T. Slow Accumulations of Neural Activities in Multiple Cortical Regions Precede Self-Initiation of Movement: An Event-Related fMRI Study. eNeuro, 2017, vol. 4, no. 5. Art. no. ENEURO.0183-17.2017. https://doi.org/10.1523/ENEURO.0183-17.2017
  49. Joyal M., Wensing T., Levasseur-Moreau J., Leblond J., Sack A.T., Fecteau S. Characterizing Emotional Stroop Interference in Posttraumatic Stress Disorder, Major Depression and Anxiety Disorders: A Systematic Review and Meta- Analysis. PLoS One, 2019, vol. 14, no. 4. Art. no. e0214998. https://doi.org/10.1371/journal.pone.0214998
  50. Popov T., Kustermann T., Popova P., Miller G.A., Rockstroh B. Oscillatory Brain Dynamics Supporting Impaired Stroop Task Performance in Schizophrenia-Spectrum Disorder. Schizophr. Res., 2019, vol. 204, pp. 146–154. https://doi.org/10.1016/j.schres.2018.08.026
  51. Salgado-Pineda P., Rodriguez-Jimenez R., Moreno-Ortega M., Dompablo M., Martínez de Aragón A., Salvador R., McKenna P.J., Pomarol-Clotet E., Palomo T. Activation and Deactivation Patterns in Schizophrenia During Performance of an fMRI Adapted Version of the Stroop Task. J. Psychiatr. Res., 2021, vol. 144, pp. 1–7. https://doi.org/10.1016/j.jpsychires.2021.09.039
  52. Ros L., Satorres E., Fernández-Aguilar L., Delhom I., López-Torres J., Latorre J.M., Melendez J.C. Differential Effects of Faces and Words in Cognitive Control in Older Adults with and Without Major Depressive Disorder: An Emotional Stroop Task Study. Appl. Neuropsychol. Adult, 2023, vol. 30, no. 2, pp. 239–248. https://doi.org/10.1080/23279095.2021.1927037
  53. Aliyeva N., Yozgat Y., Bakhshaliyev N., Afshord T.Z., Yozgat C.Y., Kilicoglu A.G. Evaluation of Executive Functions in Children with Rheumatic Heart Diseases. Pediatr. Int., 2022, vol. 64, no. 1. Art. no. e15035. https://doi.org/10.1111/ped.15035
  54. Bo W., Lei M., Tao S., Jie L.T., Qian L., Lin F.Q., Ping W.X. Effects of Combined Intervention of Physical Exercise and Cognitive Training on Cognitive Function in Stroke Survivors with Vascular Cognitive Impairment: A Randomized Controlled Trial. Clin. Rehabil., 2019, vol. 33, no. 1, pp. 54–63. https://doi.org/10.1177/0269215518791007
  55. Yin J., Xie L., Luo D., Huang J., Guo R., Zheng Y., Xu W., Duan S., Lin Z., Ma S. Changes of Structural and Functional Attention Control Networks in Subclinical Hypothyroidism. Front. Behav. Neurosci., 2021, vol. 15. Art. no. 725908. https://doi.org/10.3389/fnbeh.2021.725908
  56. Tarantino V., Visalli A., Facchini S., Rossato C., Bertoldo A., Silvestri E., Cecchin D., Capizzi M., Anglani M., Baro V., Denaro L., Della Puppa A., D’Avella D., Corbetta M., Vallesi A. Impaired Cognitive Control in Patients with Brain Tumors. Neuropsychologia, 2022, vol. 169. Art. no. 108187. https://doi.org/10.1016/j.neuropsychologia.2022.108187
  57. Politov M.E., Shtaynmets A.A., Krasnosel’skiy M.Ya., Bastrikin S.Yu., Bulanova E.L., Ovechkin A.M. Sravnitel’nyy analiz metodov otsenki kognitivnoy disfunktsii v perioperatsionnom periode u patsientov pozhilogo vozrasta posle endoprotezirovaniya tazobedrennogo i kolennogo sustavov [The Comparative Analysis of Methods of Evaluation of Cognitive Dysfunction in Peri-Operational Period in Patients of Elder Age After Endoprosthesis Replacement of Hip and Knee Joints]. Rossiyskiy meditsinskiy zhurnal, 2015, vol. 21, no. 3, pp. 20–25.
  58. Kiesel A., Steinhauser M., Wendt M., Falkenstein M., Jost K., Philipp A.M., Koch I. Control and Interference in Task Switching: A Review. Psychol. Bull., 2010, vol. 136, no. 5, pp. 849–874. https://doi.org/10.1037/a0019842
  59. Braet W., Noppe N., Wagemans J., Op de Beeck H. Increased Stroop Interference with Better Second-Language Reading Skill. Q. J. Exp. Psychol. (Hove), 2011, vol. 64, no. 3, pp. 596–607. https://doi.org/10.1080/17470218.2010.5 13735
  60. Šaban I., Schmidt J.R. Interlinguistic Conflict: Word-Word Stroop with First and Second Language Colour Words. Cogn. Process., 2022, vol. 23, no. 4, pp. 619–636. https://doi.org/10.1007/s10339-022-01105-1



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North